メモリベース・キャッシング代理サーバの実装

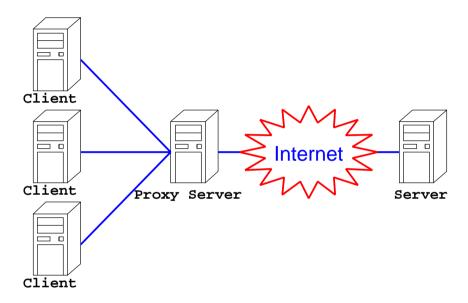
-アクセスピーク時における応答時間劣化の軽減手法-

奈良先端科学技術大学院大学 梶田 朋己

tomomi-k@is.aist-nara.ac.jp

奈良先端科学技術大学院大学 情報科学研究科

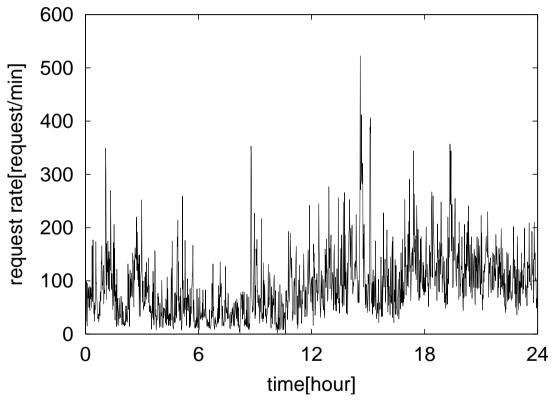
Graduate School of Information Science, Nara Institute of Science and Technology


発表の流れ

- ●背景
- キャッシング代理サーバのアクセス
- アクセスピーク時の応答劣化
- メモリベースキャッシング代理サーバ
- 実装
- 実験
- ●今後の課題

背景

- World-Wide Web(WWW) の利用者数の増加
 - ○サーバの負荷上昇
 - ○トラフィックの増加
- 負荷の軽減に WWW キャッシングを利用
 - クライアントによる WWW キャッシング
 - ○キャッシング代理サーバ


キャッシング代理サーバ

キャッシングを行うと、

- トラフィックの削減
- 応答時間の短縮

代理サーバへのアクセスが増加すると、代理サーバの応答時間 が劣化

代理サーバへのアクセスには、偏りが存在する

ピークとオフピーク

- ピークとオフピーク
 - ○アクセスの集中する時間帯(ピーク)
 - ▷リクエストが到着する間隔が短い
 - ▷ 単位時間当たりに到着するリクエスト数が多い
 - ○アクセスの散慢な時間帯 (オフピーク)
 - ▷ リクエストが到着する間隔が長い
 - ▶単位時間当たりに到着するリクエスト数が少ない
- アクセスのピークには、オフピークの約3倍のアクセスがある ("Sizing up your Web server", SunWorld, October 1997, B.L.Wongら)

アクセスのピークになると、代理サーバの応答が急激に悪化

アクセスピーク時における代理サーバの応答劣化を改善する手 法を提案し実装を行う

応答時間劣化の原因

- ーつのリクエストにつき、二つのコネクション ↓
- ◆ クライアントからみてサーバとして動作
- 代理サーバの処理能力不足による劣化
- ネットワーク帯域の不足による劣化

応答時間劣化の原因 (cnt'd)

WWW キャッシングには、大きな記憶領域が必要

- ◆キャッシュは、ディスクベースで蓄積
- ●ピークになると、ディスク I/O がボトルネック

解決策

● ディスクのボトルネック緩和には、メモリを用いる方法が一般的 (OS によるディスクキャッシュetc.)

メモリとディスクの併用

最近の動向 · · · メモリとディスクの併用

- ●アクセスされる頻度が高いオブジェクトはメモリ内に保持
- ●アクセスされる頻度の低いものはディスク内に保持
- ●アクセスが少ない時は、効果的である
- アクセスが増加すると、ディスク I/O の影響を受ける

メモリベースキャッシング

- ◆ メモリの大容量、低価格化⇒ メモリのみによる WWW キャッシングが可能
- メモリベースにより、
 - ディスク I/O によるボトルネックの緩和
 - ○キャッシュヒットしたときの応答時間の向上

メモリベースキャッシング代理サーバの提案はいくつか存在する ("Memory-based architecture for distributed WWW caching proxy", 7th Internet World Wide Web Conference", April 1998, Australia, 西川ら)

設計 - メモリベースキャッシング -

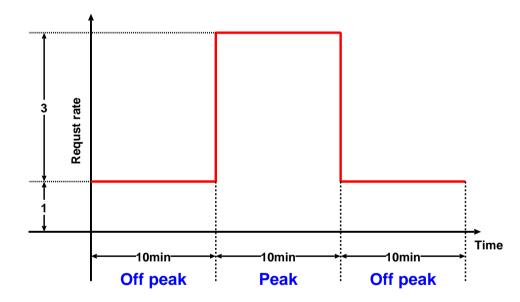
- 物理メモリのみの使用
- 置換アルゴリズムは、LRU を採用
- 個々のオブジェクトに割り当てるキャッシュ領域のサイズは 固定長
- 割り当てたサイズよりも大きいオブジェクトは破棄

実装

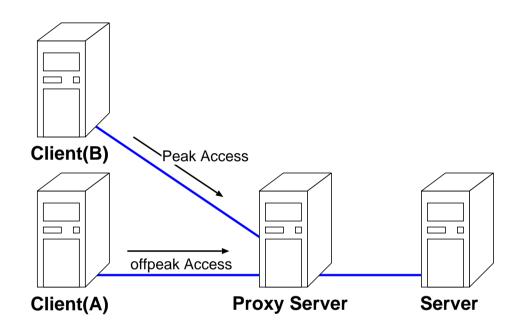
- select() システムコールによる I/O 多重
- ◆キャッシュ領域は、起動時にヒープ領域から確保
- 線形リストを用いた LRU アルゴリズム
- 高速化のためキャッシュの検索は、ハッシュを利用

アクセスピーク時の応答時間測定

メモリベースによって、ピークにおける応答劣化が緩和される かどうかを調べる


- 1. ピークにおけるアクセスパターンをモデル化
- 2. モデル化したアクセスパターンを生成
- 3. 生成したアクセスパターン上で測定
- 4. 得られた結果を比較

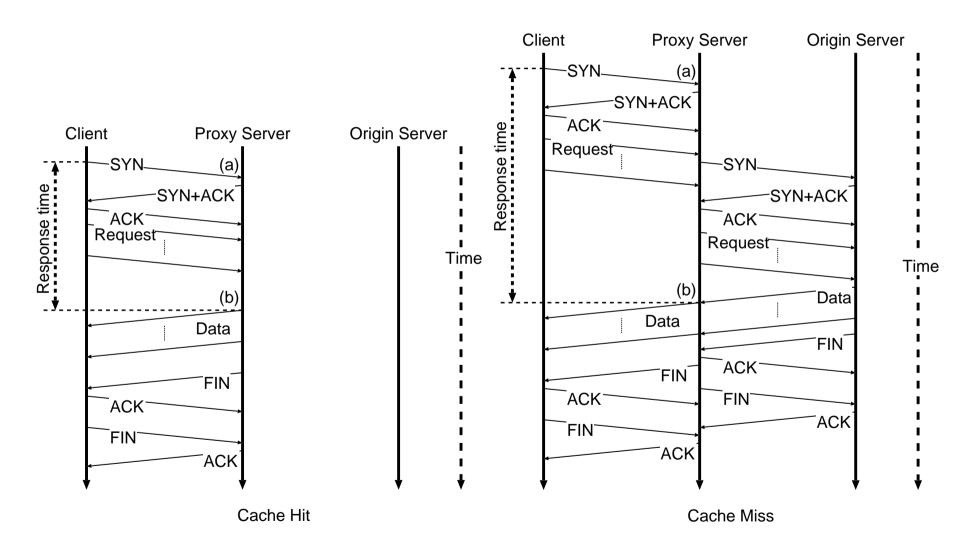
比較に用いた代理サーバ


- tmproxy(実装した代理サーバ)
- Squid 2.2 STABLE 4
 - ディスク上にキャッシュ
 - o MFS(Memory File System) 上にキャッシュ

アクセスパターンのモデル

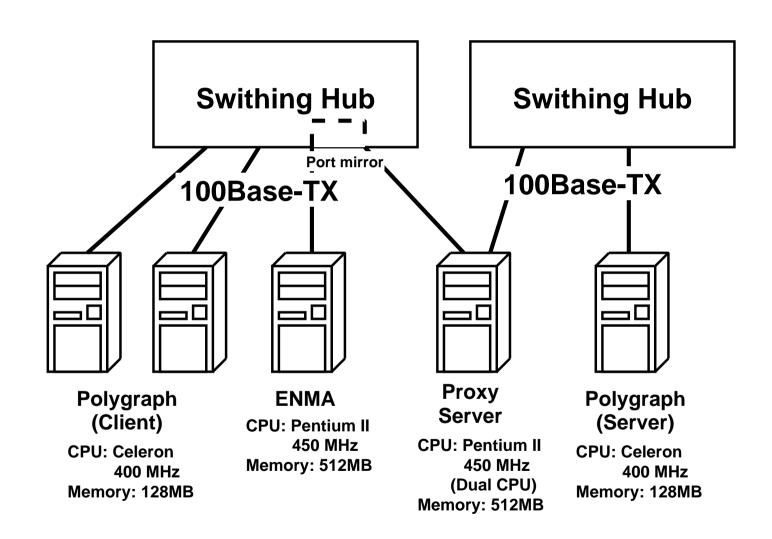
- 一つのピークに注目
- 凸型のアクセスモデル
- ●ピークの高さは、オフピークの4倍

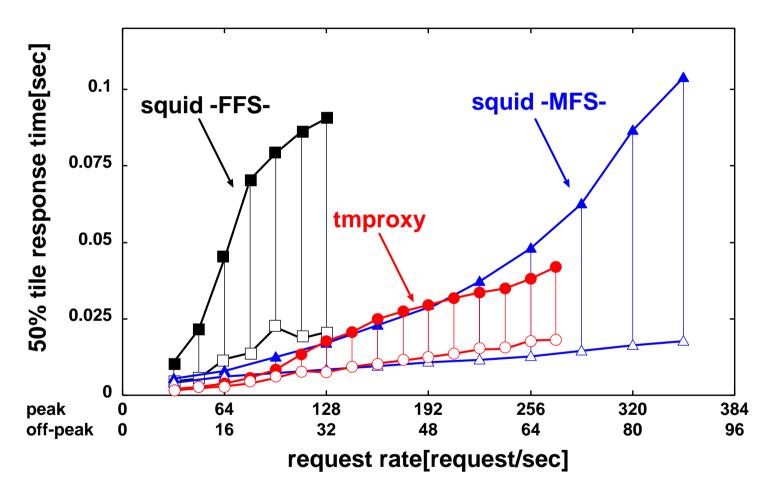
アクセスパターンの発生方法



- 1. オフピークを発生する (A) を起動
- 2. (A) の起動から 10 分後に、ピークを発生する (B) を起動
- 3. (B) を起動から 10 分後に停止
- 4. (A) を起動から 30 分後に停止

性能の指標


- 性能の指標は、応答時間
 - Polygraph では、個々のリクエストについての詳細なデー タが得られない
 - ⇒ENMA を利用
 - ∘ ENMA とは、
 - ▷ パケットモニタリングにより WWW サーバの性能を測 定するツール
 - ▷ "ENMA: The WWW Server Performance Measurement System via Packet Monitoring" INET'99, San Joze, 中 村ら
- リクエスト頻度の指標は、リクエストレート


応答時間の定義

他のパラメータ

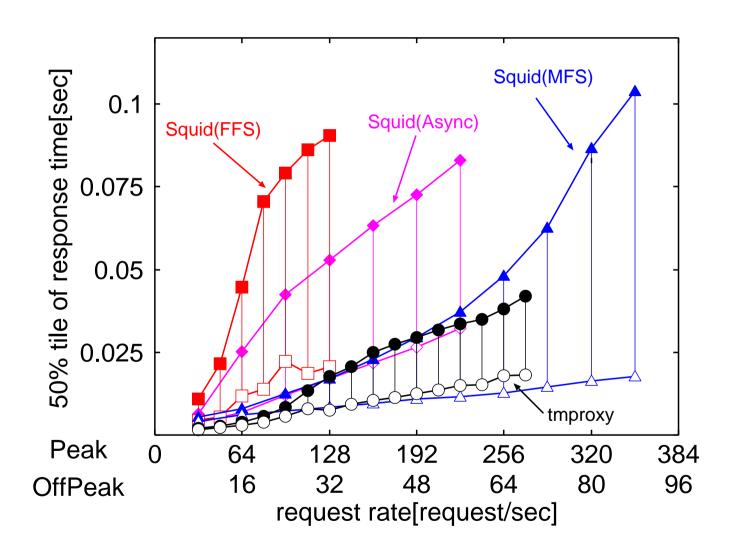
- 代理サーバの設定
 - squid のディスクキャッシュサイズは、100MByte
 - squid のメモリキャッシュサイズは、0MByte
 - tmproxy のキャッシュサイズは、100MByte
- その他のパラメータは、1st Bake-off を参考
 - ヒット率は、55%
 - キャッシュ可能率は、80%
 - オブジェクトサイズは、平均 10KByte
 - \circ サーバが応答を返すまでの遅延時間は、平均 2 ± 1.5 [sec]

● メモリベースによる応答時間劣化の大幅な緩和を確認

今後の課題

- ●アクセスピークの過渡解析
 - o polygraph-1.3 では、過渡解析が困難⇒ polygraph-2.0 から、アクセスの細かい制御が可能
- WAN 環境のエミュレート
 - dummynet などによる WAN 環境のエミュレートが必要
- 効率の良いキャッシュ管理アルゴリズムの開発
 - ○パフォーマンスを損なわずにキャッシュサイズを縮小
 - ○ピーク・オフピークを考慮したキャッシュ管理

まとめ


- 代理サーバへのアクセスには偏りが存在
- アクセスのピークになると代理サーバの応答が劣化
- 応答時間劣化の原因の一つが、ディスク I/O であることに注目
- ◆ メモリベースでキャッシュを行なうことで改善できることを 提案
- 実際にメモリベースキャッシング代理サーバを実装
- 測定の結果、大幅な改善が可能であることを確認

Web Polygraph

- 代理サーバのベンチマークソフトウェア
- 開発元は IRCache
- 入手先は、http://polygraph.ircache.net/
- ◆ クライアントとサーバから構成されており、間に代理サーバ を挟んで測定
- ●レスポンスレート、平均応答時間、キャッシュヒット率、エラーの発生数が測定可能
- ●リクエストレート、ヒット率、アクセスパターンなどのパラメータが設定可能
- 1.2.1 から、オブジェクト 生存期間(Expire タグ)の設定も可能
- 2.x からは、より細かいアクセスの設定が可能

ENMA (Enhanced Network Packet Mesuament Agent

- パケットモニタリングによって WWW サーバの性能測定を行 うツール
- 開発者は、奈良先端科学技術大学院大学の中村ら
- 入手先は、http://enma.aist-nara.ac.jp/
- ●詳しい話は、開発関係者がその辺にいるのでとっ捕まえて聞いて下さい。

