Collecting a great number of active IPv6 addresses

Yudai Aratsu¹

Satoru Kobayashi²

sat@nii.ac.jp

kensuke@nii.ac.jp

Kensuke Fukuda²

Hiroshi Esaki¹

hiroshi@wide.ad.jp

1:The University of Tokyo 2: National Institute of Informatics

aratsu@hongo.wide.ad.jp

Background

- Scanning whole IPv4 address takes only 45 min.
- IPv6 has vast address space.
 - to scan efficiently, active IPv6 address Hitlist is needed.

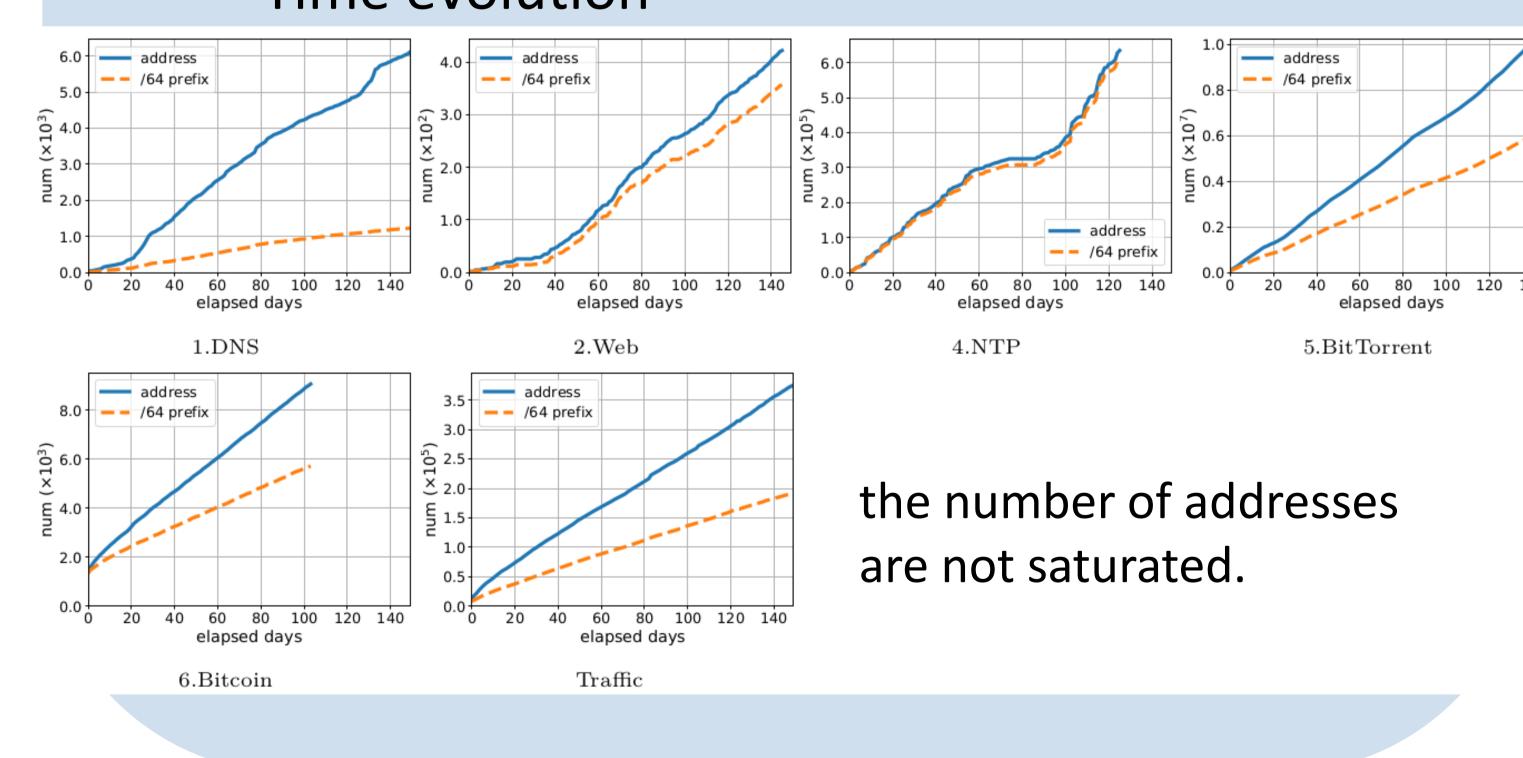
Goal

Generating IPv6 address Hitlist by employing various methods.

How to collect a large number of active IPv6 addresses?

Methods

- Using server logs
 - Web, Mail, NTP, DNS
- Crawling P2P network
 - BitTorrent, Bitcoin
- rDNS enumeration [1]


Since Jun, 2018

Result [2]

Total numbers

		${f Period}$	$\# \mathbf{Address}$	$\#/64~\mathrm{prefix}$	$\#\mathbf{AS}$
1.	DNS	151 days	$6,\!155$	$1,\!245$	418
2.	Mail	$146 \mathrm{days}$	1	1	1
3.	Web	149 days	422	357	101
4.	NTP	123 days	$634,\!941$	$613,\!011$	341
5.	$\operatorname{BitTorrent}$	137 days	9,734,709	$5,\!813,\!622$	1,981
6.	Bitcoin	$104 \mathrm{days}$	$4,\!428$	$3,\!100$	668
7.	rDNS enumeration	55 days	$7,\!564,\!320$	118,844	582
	Total	151 days	17,948,250	6,549,576	2,545
	Traffic (mawi)	151 days	377,409	193,168	4,902

Time evolution

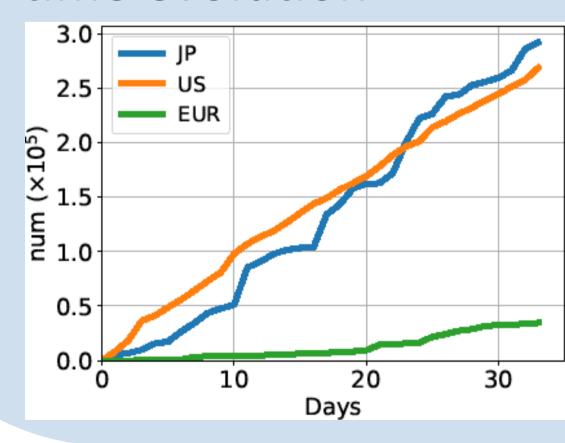
IID based classification

\mathbf{Type}	1.DNS	$\mathbf{2.Web}$	4.NTP	5.BT	6.BC	7.rDNS	$\mathbf{Traffic}$
"0000"	92.6%	20.6%	14.5%	13.0%	29.1%	91.3%	27.2%
"fffe"	2.3%	0.7%	3.5%	7.0%	9.8%	1.1%	9.8%
Others	5.1%	78.7%	82.0%	80.0%	63.1%	7.6%	63.1%

IP addresses of server or client?

Response rate (icmp6)

	1.DNS	2.Web	$5.\mathrm{BT}$	$6.\mathrm{BC}$	7.rDNS		
	65.8%	8.1%	0.1%	22.3%	0.2%		
mostly IP addressess do not respon							
	(not stable?)						


- collecting in three countries
 - Japan (Tokyo), US (California), Europe(Netherland)
 - since Sep, 2018

result of NTP server (33 days)

country based collected address classification

JP server		\mathbf{US}	${f US\ server}$		EUR server	
IN	$72,\!2\%$	US	84.5%	BR	31.4%	
SA	10.1%	IN	11.1%	EU	30.0%	
VN	3.2%	BR	0.7%	AT	11.3%	
JP	2.5%	CN	0.6%	MX	7.8%	
CN	1.5%	GT	0.4%	AR	4.9%	

time evolution

Huge bias among server location

- [1] T. Fiebig, et al. "Something from nothing (There): Collecting global IPv6 datasets from DNS." PAM'17
- [2] 新津, et al. "大規模IPv6アドレス収集手法の検討" 信学技報 2018.09
- [3] P. Foremski, et al. "Entropy/IP: Uncovering Structure in IPv6 Addresses" IMC'16
- [4] O. Gasser, et al. "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists" IMC'18

Discussion

How to collect more IPv6 addresses?

- multiple location
- more service
- employing machine learning [3]

How to generate "high quality" Hitlist? [4]

- collecting stable IPv6 addresses
- pseudo active space detection