
 Moodle is a free, online Learning Management
system. Moodle is widely used as an e-Learning
system in many educational institutions. It is
easy to install and can be expanded with plugin.

 VPL is a free system formed by two
components: the Moodle plugin and the execution
system. The Moodle plugin can be installed as a
regular Moodle plugin. The execution system
needs to be compiled for installation.

Students:
• Edit
• Run
• Evaluate

Teachers:
• Easy Evaluation

Benefits for Students:
• No compiler required, Browser only required. 
→Available on Tablet or Smartphone.

• No source code submission required.
• Discover mistakes themselves instantly.

 In this research, we have constructed a programming education support system using Moodle and VPL using VM. We have newly supported ProVerif
to previously developed e-Learning system using VM. In addition, we have newly created the contents for learning ProVerif and actually started the
learning exercise of ProVerif by using the developed system. As a future plan, we would like to enrich the contents and evaluate the effect of learning
the security programming by using the developed e-Learning system.

†Osaka Electro-Communication University

 In Japan, due to the lack of ICT engineers, fostering human resources for ICT is an urgent task. Especially, cryptographic technology is a fundamental
element for realizing information security. Learning knowledge and training techniques on cryptography are indispensable not only to researchers and
engineers specialized in cryptography but also to ICT engineers such as network engineers and operators. However, the educational environment and
teaching materials of cryptographic technology for ICT engineers are not sufficient. There is also a lack of teachers who can educate the theory and the
technology of the cryptography.
 Recently, e-Learning using the Internet has been widely spread especially at the educational places such as universities. Moodle is popular and widely
used as an e-Learning system. In Moodle, students answer questions on quizzes on the browser via Internet and whether the answer is correct or not
can be judged depending on whether or not their answer matches the model answer set by the teacher. Moodle is excellent e-Learning system which
also has an automatic scoring function. However, learning programming with Moodle is not always easy because the program is not necessarily one
correct answer.
 VPL, Virtual Programming Lab for Moodle, is a free system formed by two components: the Moodle plugin and the execution system(Jail-System).
The Moodle plugin can be installed as a regular Moodle plugin. The execution system needs to be compiled for installation. The installation is not
always easy for teachers.
 Formal verification of cryptographic protocols has been studied extensively in recent years. ProVerif is one of the most successful automatic
cryptographic protocol verifiers. In the previous work, we developed an e-Learning system for learning C programming based on Moodle with VPL by
using VM, Virtual Machine, for easy installation[1]. In this research, we newly support ProVerif to the previously developed system and create the
contents for learning ProVerif.

Benefits for Teachers:
• Automatic evaluation. 
→No program download, nor compile,  
　nor execution required.

• By the test pattern, it is easy to find mistakes.
• The correct answer is judged as correct 

even if it is not the model answer.

Benefits for System Managers:
• Using VM, Any host OS available.
• Easy to Install, manage and update.
• No need to introduce compiler for each

client.

Tatsuki Miyamoto†, Shogo Shimura‡, Tatsuki Watanabe†,
Hiroyuki Okazaki‡, Yuichi Futa§, Yasuyuki Murakami†

[1] M. Nakamura, T, Watanabe, M. Kaneda, H. Okazaki and Y. Murakami, “Programing education support system using Moodle,” 40th Symposium on Information Theory and Its Application,
 Poster session, SITA2017, Nov. 2017 (in Japanese).

Client

VM moodle
VM C VM D

C
Jail-System

VM A
Mizar

Jail-System

VM B

ProVerif
Jail-System

Java
Jail-System

Internet

VPL

Acknowledgement: This study was supported in part by JSPS KAKENHI Grant Numbers JP18K02917 and JP17K00182.

Fig.4 ProVerif Sample Source Code

free c: channel.
free hirabun: bitstring [private].

type pkey.
type skey.
free Rsky: skey [private].

event DECSUCC.
event SEND.

query event(DECSUCC).
query attacker(hirabun).

(*common key cryptosystem*)
fun enc(bitstring, bitstring): bitstring.
fun dec(bitstring, bitstring): bitstring.
equation forall x: bitstring, s: bitstring; dec(enc(x,s),s) = x.

(*public key encryption*)
fun pk(skey): pkey.
fun encrypt(bitstring, pkey): bitstring.
fun decrypt(bitstring, skey): bitstring.
equation forall x:bitstring, sky:skey; decrypt(encrypt(x, pk(sky)), sky) = x.

let R =
 in(c, (m1:bitstring, m2:bitstring)); (* m1 = encrypt() m2 = ctxt *)
 let sk = decrypt(m1, Rsky) in
 if(dec(m2, sk) = hirabun) then event DECSUCC.

process
 (event SEND;
 new randx: bitstring;
 let ctxt = enc(hirabun, randx) in
 out(c, (encrypt(randx, pk(Rsky)), ctxt)))
 | R

Fig.5 Verifying Process by ProVerif

Linear part:
Completing equations...
Completed equations:
Convergent part:
dec(enc(x,s),s) = x
decrypt(encrypt(x_7,pk(sky)),sky) = x_7
Completing equations...
Completed equations:
decrypt(encrypt(x_7,pk(sky)),sky) = x_7
dec(enc(x,s),s) = x
Process:
(
{1}event SEND;
{2}new randx: bitstring;
{3}let ctxt: bitstring = enc(hirabun,randx) in
{4}out(c, (encrypt(randx,pk(Rsky)),ctxt))
) | (
{5}in(c, (m1: bitstring,m2: bitstring));
{6}let sk: bitstring = decrypt(m1,Rsky) in
{7}if (dec(m2,sk) = hirabun) then
{8}event DECSUCC
)

- Query not attacker(hirabun[])
Completing...
Starting query not attacker(hirabun[])
RESULT not attacker(hirabun[]) is true.
- Query not event(DECSUCC)
Completing...
Starting query not event(DECSUCC)
goal reachable: end(DECSUCC)

1. The message (encrypt(randx[],pk(Rsky[])),enc(hirabun[],randx[])) may be sent to the attacker at output {4}.
attacker((encrypt(randx[],pk(Rsky[])),enc(hirabun[],randx[]))).

2. By 1, the attacker may know (encrypt(randx[],pk(Rsky[])),enc(hirabun[],randx[])).
Using the function 2-proj-2-tuple the attacker may obtain enc(hirabun[],randx[]).
attacker(enc(hirabun[],randx[])).

3. By 1, the attacker may know (encrypt(randx[],pk(Rsky[])),enc(hirabun[],randx[])).
Using the function 1-proj-2-tuple the attacker may obtain encrypt(randx[],pk(Rsky[])).
attacker(encrypt(randx[],pk(Rsky[]))).

4. By 3, the attacker may know encrypt(randx[],pk(Rsky[])).
By 2, the attacker may know enc(hirabun[],randx[]).
Using the function 2-tuple the attacker may obtain (encrypt(randx[],pk(Rsky[])),enc(hirabun[],randx[])).
attacker((encrypt(randx[],pk(Rsky[])),enc(hirabun[],randx[]))).

5. The message (encrypt(randx[],pk(Rsky[])),enc(hirabun[],randx[])) that the attacker may have by 4 may be received at input {5}.
So event DECSUCC may be executed at {8}.
end(DECSUCC).

A more detailed output of the traces is available with
set traceDisplay = long.

event SEND at {1}

new randx: bitstring creating randx_404 at {2}

out(c, (~M_410,~M_411)) with ~M_410 = encrypt(randx_404,pk(Rsky)), ~M_411 = enc(hirabun,randx_404) at {4}

in(c, (~M_410,~M_411)) with ~M_410 = encrypt(randx_404,pk(Rsky)), ~M_411 = enc(hirabun,randx_404) at {5}

event DECSUCC at {8} (goal)

The event DECSUCC is executed.
A trace has been found.
RESULT not event(DECSUCC) is false.

e-Learning System for
Cryptography on Moodle

§Tokyo University of Technology
‡Shinshu University

Developed e-Learning System

Summary

Conclusion

ProVerif Sample

What is Moodle / VPL

Fig.2 Learning ProVerif on Moodle+VPL

Fig.3 System Configuration

Fig.1 Moodle Screen on Browser

