Kamuee: An IP Packet Forwarding Engine for
Multi-Hundred-Gigabit Software-based Networks

Yasuhiro Ohara?, Hiroki Shirokura?, Abhik Datta Banik?, Yudai Yamagishi?, Kim Kyunghwanb

ANTT Communications Corporation
b Independent Engineer

Abstract

In Software Defined Network (SDN) and Network Function Virtualization (NFV) era, extensible, flexible, and yet
high-performance software packet forwarding capability is desirable, as the core functionality of the future Internet. In
this paper we present Kamuee: a software IP packet forwarding engine, and its core router version that builds only on
commodity hardware. By scaling the number of forwarding CPU cores, Kamuee supports multiple 100GbE interfaces,
with near wire-rate traffic. In our benchmarks that use two Intel Xeon Platinum 8180 processors, Kamuee could
forward 349.60 Gbps 512B-sized random destination traffic in a BGP full route environment. Further intralaboratory
evaluation resulted in 292.17 Mpps 64B forwarding capability, showing the potential of very high-speed software

router.

Keywords: NFV, SDN, Software Router, DPDK

1. Introduction

The rapid emergence of services based on technolo-
gies such as cloud computing and Al-driven robotics,
underlines the desperate requirement for next genera-
tion networks, which are more flexible and able to keep
pace with changes in usage and capacity. Software-
defined networking (SDN), network functions virtu-
alization (NFV), and network virtualization (NV) are
the solutions which address this requirement and pro-
vide novel methodologies to design, build and operate
next generation networks. Thanks to the recent break-
throughs like off-the-shelf hardware or whitebox net-
working, a massive paradigm shift in networking tech-
nology finally took place by decoupling software from
the hardware, so that it is no longer constrained by the
box that delivers it. SDN and NFV have become indis-
pensable for all telecommunication service providers to
(1) Drive Innovation by creating new types of appli-
cations, on-demand services and business models (2)
Deliver Agility and Flexibility by enabling rapid de-
ployment of new applications, services and infrastruc-
ture to quickly fulfill their changing requirements (3)
Reduce OpEX by enabling automation and algorithm
control through increased programmability of network
elements to make it simple to design, deploy, manage
and scale networks and (4) Reduce CapEx by enabling

Preprint submitted to Internet Conference 2018

network functions to run on commodity off-the-shelf
(COTS) hardware.

Therefore, software-defined networking is not only
good for the network, but for the business as well.
With SDN, the network can be made programmable. A
deeper look into network programmability reveals that
it involves both the control plane and the data plane and
that both are valuable in containing costs and enabling
business growth. Data path programmability offers a
platform for rapidly deploying a new service or modi-
fying an existing one. This is particularly important to
service providers in fields like security, for example, to
mitigate a massive DDoS attack affecting hundreds of
vulnerable servers across the globe.

Today, both control and data plane programmabil-
ity provided by software-based solutions are the de-
sirable characteristics of network services and devices.
An integral part of this is software based processing of
data packets. But without high performance, software
packet processing cannot leverage the potential benefits
of SDN and NFV. Recent unprecedented leaps in NFV
with performance reaching up to 100 Gbps [1, 2], make
the need for software routers supporting speeds above
100 Gbps even more imperative. Keeping this in mind,
we endeavored to develop a high performance software
IP packet forwarding engine called Kamuee with com-
prehensive Layer 3 (routing) functionalities. Kamuee

November 16, 2018

successfully integrates the capabilities of DPDK (Data
Plane Development Kit) [3] with Poptrie [4] to achieve
stable and reliable high speed software IP packet rout-
ing. Kamuee is a fully fledged software router that can
run on COTS PC Server and is capable of forwarding
344.28 Gbps random destination IP traffic with Ether-
net frame size greater than 512B and approx. 600,000
full routes.

In this paper we present the design, implementation
and evaluation of Kamuee. Section 2 describes the re-
lated research. Section 3 highlights the design and im-
plementation methodology of Kamuee. Section 4 elab-
orates the performance evaluation of Kamuee. Kamuee
was used as one of the core routers in Interop Tokyo
2018 and the relevant experience has been shared in sec-
tion 5. Section 6 concludes the paper.

2. Related work

Achieving high performance in software routing im-
plementations has been a major challenge over the last
two decades and has lead to some cutting-edge advances
in this field. Slowness of Linux network stack perfor-
mance has become increasingly relevant issue over the
years because of the exponential increase in the amount
of data that is being transferred over networks and the
corresponding workloads. Even the widespread use of
10 GbE network cards could not resolve this issue be-
cause of some bottlenecks in Linux kernel itself that pre-
vent packets from being quickly processed. There have
been many attempts to circumvent these bottlenecks
with kernel bypass techniques that enable packet pro-
cessing without involving the Linux network stack such
that the application running in the user space communi-
cates directly with networking device. Intel’s DPDK [3]
is one such solution which takes care of the packet for-
warding performance bottleneck. DPDK leverages ex-
isting Intel Processor technologies like SIMD instruc-
tions (Singles Instruction Multiple Data), Huge-pages
memory, multiple memory channels and caching to pro-
vide packet processing acceleration with its own li-
braries. Recent innovation like Poptrie addresses an-
other major bottleneck of IP routing lookup. Pop-
trie [4] leverages the population count instruction to
give the indirect indices to the descendant nodes in or-
der to keep the small memory footprint within the CPU
cache and enables extremely high speed IP lookup. Ka-
muee harnesses (1) packet processing acceleration of
DPDK (2) high-speed packet lookup provided by Pop-
trie and (3) parallel processing for its superior perfor-
mance. Read-Copy Update (RCU) [5] has been used to

achieve the latter, for concurrency control owing to its
lock/synchronization specialization.

Kamuee-Zero [6] presents the routing table mecha-
nisms of the previous version of this implementation.
The paper shows that 1) in order to achieve near wire-
rate performance in 40GbE, more than three queues
per port are necessary, 2) the difference in through-
put performance between NUMA-aware and NUMA-
nonaware is not large (if not negligible), and 3) perfor-
mance exceeding one hundred Gbps can be achieved us-
ing software based router, with four 40GbE interfaces
and 128B short packet random traffic. Kamuee-Zero
did not have routing capability as it did not support any
routing protocol. In contrast, Kamuee (the version pre-
sented in this paper) supports all major routing proto-
cols such as BGP, OSPF, and RIP, and other required
functions that are necessary to function as a basic router,
such as ARP, VLAN, and statistics counter. Also, while
Kamuee-Zero supports only 40GbE network hardware,
Kamuee can additionally support 100GbE hardware as
well.

While NFV tackles the problems posed by legacy
proprietary middleboxes [7] by leveraging virtualiza-
tion technologies to implement network functions (NFs)
on commodity hardware, the advantages of NFV come
with some downsides [8] as software-based NFs can po-
tentially introduce significant performance overheads.
Several research works have been done to address
the performance drawback of software based NFV.
ClickNP [9] offloads software logic onto programmable
hardware like FPGA to accelerate individual NFs. Net-
Bricks [10] runs NFs on a single CPU core instead of
virtual machines and containers to improve NF perfor-
mance. ClickOS [11], DPDK [3] and NetVM [12] opti-
mize and accelerate packet processing from the network
hardware to and between virtual machines. Recently,
there have been some astounding progress in NFV per-
formance in the past couple of years. Metron [1] real-
izes high performance NFV service chains at the emerg-
ing and extremely challenging link speeds at 100 Gbps
using commodity hardware, while significantly reduc-
ing latency. Andromeda [2], Google Cloud Platform’s
network virtualization stack demonstrates that an OS
bypass software data-path provides performance com-
petitive with hardware, achieving 32.8Gb/s using a sin-
gle core. Some other advancements in this area include
SafeBricks [13] protecting NFs in cloud environments,
a novel programming interface forNon-Volatile Main
Memory called PASTE [14] , NFV resource manager
ResQ [15] supporting high performance in multi-tenant
NFV clusters, and, highly scalable and resilient general
purpose L2 switching software FBOSS [16] capable of

running on commodity hardware.

3. Design and implementation

The main motivation of Kamuee design is the follow-
ing: if the software is good and simple, we should be
able to get a good performance out of a good hardware.
Furthermore, we should be able to increase the overall
performance by adding more hardware resources (i.e.,
CPU cores). To achieve this, Kamuee was designed and
implemented as simple as possible, in the belief that any
complexity may lead to performance degradation (i.e.,
KISS principle).

Kamuee employs the run-to-completion model [17]
rather than pipe-line model: we adopted this model be-
cause the run-to-completion model is suggested as a
better-performance model in a past work called Route-
Bricks [18]. By employing the run-to-completion
model, we can scale-out the packet forwarding process
over the multiple CPU cores, enabling the design goal
of increased performance by increased hardware.

Some design policies are inspired by others’ work.
RCU is utilized in Linux kernel and also in some DPDK
applications [19]. Use of Tap devices [20, 21] or KNI
interface [22] to map the physical NICs in Linux to con-
nect to the open-source software, is a well-known ap-
proach and is also supported by VPP [23].

CPU core (equivalently, CPU time) is a very precious
resource for our purpose: if we have spare CPU core,
we could gain more performance. Thus, we assem-
ble the slow tasks (i.e., the tasks that do not need high
performance), such as netlink, RIB, acl, tap, arp, and
vty (i.e., virtual terminal), on one CPU core, to avoid
wasting CPU core. To achieve this, we used Lthread
library [24] included in the DPDK source (located un-
der examples/performance-thread). Furthermore,
since the function call interface are the same, we can
change native DPDK thread to Ithread thread and vice
versa, enabling balance in performance. For exam-
ple, because our experience suggested to speed them,
in our current recommended setting, rib-manager, tap-
manager, and snmp-manager run as the native DPDK
threads, consuming one CPU core for each.

Figure 1 illustrates the internal structure of the Ka-
muee software router. In the fundamental DPDK con-
cepts, Network Interface Cards (NICs) belongs to ei-
ther Linux space or DPDK space. The figure happens
to show the case that two NICs belong to Linux, and
four NICs belong to DPDK, but it is configurable. The
packets received in DPDK NICs are distributed to a spe-
cific CPU core by the RSS/multiqueue technology of the
NIC. The assigned CPU core is running a “forwarder”

vty—server
arp manager

|:|tap manager
—E |:| acl manager

()) RIP manager
tap device netlink manager

RCU(liburcu)
D Ithread

T

r forwarder scheduler
L 31| | (==l [TN TRA LT
N ENNEENNEEN SNEENEEEEN
netlink socket 0 1 2 3456 7 8 9 10111213 14 1516 17 18 19
\

= e e S

Figure 1: Kamuee internal structure: the ordinary linux space with
two NICs and the DPDK space with four attached NICs are illus-
trated on left and right, respectively. Two CPU sockets are shown
on the right, with most of the CPU cores running “forwarder” DPDK
thread, enabling scale-out of packet forwarding tasks on the multiple
cores. The routing table (RIB) is compiled as FIB using Poptrie, and
distributed to each CPU socket’s L3 cache using RCU. The manager
threads such as ones dealing with netlink, tap, and vty, are launched
on the right-most core using the “Ithread” library. DPDK-attached
physical Kamuee NICs are 1-to-1 mapped on the tap devices in the
Linux space so that the routing protocol open-source software (e.g.,
Quagga) can run on the Kamuee NICs. The routes calculated by the
routing daemons are first installed in the Linux kernel, and then prop-
agated to Kamuee RIB using netlink socket/messages.

thread of Kamuee, that is built around the DPDK thread
and occupies the CPU core. The packet, if it is to be
forwarded, is solely handled by that CPU core, with-
out the need of using the other CPU cores; hence the
run-to-completion model. The forwarder thread pro-
cesses the protocol headers such as Ethernet and IP,
looks up the routing table (labeled “FIB” in the figure),
and then directly forward the packet to the other NIC
to emit the packet. Thanks to the Poptrie [4] that can
compress some hundreds of thousands of routes into
a few megabytes memory footprint, the routing table
lookup can be completed in some CPU L3 cache ac-
cesses, avoiding a lot of main memory accesses. This
simple run-to-completion forwarding process without
main memory access, together with the parallelization
(in other words, scale-out) on the number of CPU cores,
is the main reason of high-performance of Kamuee.
This is the key design of Kamuee, and is the main con-
tribution of this paper.

The control protocol packets and the self-destined
packets (i.e., the packets that are to be received by the
Kamuee host itself) are handled as follows: by routing
table lookup in the forwarder, the packet is indicated to
be passed to the Linux part of the system. Then, the
packet is passed to the “tap manager” (shown top-right
in Figure 1). The tap manager delivers the packet to the

0.0.0.0/2 nexthop: 192.85.1.3 port: 2 flags:

64.0.0.0/2 nexthop: 193.85.1.3 port: 0 flags:
128.0.0.0/2 nexthop: 194.85.1.3 port: 8 flags:
192.0.0.0/2 nexthop: 195.85.1.3 port: 6 flags:

Figure 2: Four default routes or “default4”

Linux kernel via the correspondent tap device that is 1-
to-1 mapped to the receiving NIC. In this way, the Linux
kernel, and thus the Linux user processes, can receive
the packet from DPDK attached NICs without problem.
The routing protocol daemons use this mechanism: for
example, Quagga bgpd (shown top-left in the figure) re-
ceives the BGP packets, processes them, and installs the
calculated BGP routes in the Linux kernel. The newly
installed routes are notified through the Netlink mech-
anism to the Kamuee’s “netlink manager” (shown top-
right in the figure). The “rib manager” is informed of
the new routes by the netlink manager, and the rib man-
ager installs it in the main routing table (labeled “RIB”
in the figure), and produces the FIB using the Poptrie
algorithm. One FIB for each CPU socket is prepared to
properly support the CPU cache mechanism.

4. Evaluation

4.1. Benchmark setup

In our benchmark method, we measure the per-
formance of the Device-Under-Test by sending the
random-destination IP traffic from the network test:
Spirent, by having the DUT forward back the traffic,
and then by counting the packets returned to the net-
work tester. To achieve this, we install in the DUT
four prefixes that cover all IPv4 address space, so that
the DUT can return all the packets that it could for-
ward, back to the Spirent tester machine, without caus-
ing “route not found” error. We refer to the four prefixes
that are shown in Figure 2 as “Four default routes” or
“default4”.

Wherever BGP full routes are used in the benchmark,
the snapshot taken in NTT Communications’ TestBed
on 2016/12/12 has been used, in addition to Four default
routes. The snapshot includes 612,916 prefixes.

If not specified explicitly, the compiler optimization
option defaults to ”-03”.

We generally focus on the achieved bandwidth rather
than transaction performance (i.e., packet per second or
pps). The factor limiting the performance is generally

Table 1: Hardware specification of Kamuee

Hardware Type [Product Name

Chassis SYS-7049GP-TRT

Motherboard Supermicro X11DPG-QT

CPU Intel Platinum 8180 x2

Memory DDR4-2133 16GB x12 = 192GB

NIC Mellanox Connect-X5 100GbE Dual-Port x5
Intel X710 10GbE Quad-Port x1

Table 2: Softwares used in Kamuee

Software Package | Version |

oS Ubuntu 16.04.5 amd64
DPDK 17.11

userspace-rcu 0.9.3

Quagga 0.99.24

net-snmp 6.0.1-2

either transaction performance or the bandwidth of sub-
systems, such as CPU core, QPI, and PCle. Since we
want to understand the overall performance of the sys-
tem as a whole, and since the transaction performance
can be calculated from the bandwidth performance, we
generally focus on bandwidth performance, unless we
have a specific interest.

Our version of the software demonstrated a signifi-
cant fluctuation of the performance over time. We have
measured the performance as the average of five sam-
ples. It should be noted that our measurement may not
cover the significant period of the fluctuation. Some-
times, after 30-40 seconds, Kamuee exhibits perfor-
mance degradation from 394 Gbps to 383 Gbps in the
same setting (this is shown later in Figure 4).

Table 1, 2 lists the hardware and software speci-
fication, respectively. Quagga was used to provide
BGP4/4+, OSPF and OSPFv2 functionalities on Ka-
muee.

4.2. Overall Throughput in Bandwidth (BPS)

Figure 3a shows the bandwidth throughput perfor-
mance of Kamuee when given wire-rate random traffic
from all four 100GbE interfaces. The figure compares
the performance on one core per port (1C/P) through
twelve cores per port (12C/P). It shows that Kamuee
successfully increases its performance as the number of
CPU cores increase. With 64B shortest Ethernet frame,
one core/port setting and twelve cores/port setting ex-
hibit 12.20 Gbps and 180.18 Gbps, respectively. With
1518B longest frame, 12C/P demonstrate almost wire-
rate of 394.36 Gbps.

The setting of Figure 3a is normal Linux connected
routes plus “default4”, leaving the Local Loopback
Address 127/8 destined to the Linux host’s upper layer.

Skylake 100GbE x 4 default4 DAC

Skylake 100GbE x 4 default4 DAC

200 - 12C/P
‘ 10C/P

350 |- 4 scp
= 6C/P
2 300 1 acp
o L | 2CIP ==
g 1C/P =
2 200 | -
g
3 150 -
£ 100 | -

50 |- -

0

64 128 256 512 10241518
Frame Size (Bytes)

(b) LoopbackBlackhole

Figure 3: Throughput with/without Tap Route

400 T T " A" 12C/P
1« S 10C/P
350 [. 8C/P
m 6C/P
2 300 1 acp
O L | 2CIP ==
g 1C/P =
2 200 | -
2
3 150 B
F 100 | —
50 - -
0 | | | |
64 128 256 512 10241518
Frame Size (Bytes)
(a) LoopbackTap
Skylake 100GbE x 4 default4 DAC 12cores/port
400 F ' ' S S -
S A:se
350 | e/]
8 300 | i
o)
S 250 | 4
5
2 200 | -
2
3 150 | NoACL-LoopbackTap b
£ 100 | LoopbackTap === |
NoACL-LoopbackBlackhole
50 | LoopbackBlackhole -
| FlfllRoutIe-Looebackl'z:Iackh?Ie)
0

64 128 256 512 1024 1518 *
Frame Size (Bytes)

Figure 4: With/Without Tap Route. After 30 or 40 seconds with
1518B 400 Gbps traffic, With-Tap-Route degrades its performance
slightly (shown in * mark in the x-axis). Except the one labeled with
FullRoute, the route-setting is default4.

Since we launch fully-random-destination traffic from
the tester to the Kamuee, the traffic destined to 127/8
fills and overloads the TAP socket, and sometimes cuts
the BGP session through it. To avoid such problem, we
installed 127/8 as blackhole route, and unexpectedly it
lowered the throughput performance for some unknown
reason. The performance is shown in Figure 3b. Since
traffic without the TAP destined ones are more realistic,
this can be deemed as the real performance value. We
can infer the root cause of the performance degradation
such that some bug or problem lies in Kamuee or DPDK
library. In either way, Figure 3a can be recognized as the
potential value of the software router: no matter what
bug the root cause is, the performance value of Figure 3a

shows the potential capability of the software router, if
we trust the reliable Spirent tester.

Figure 4 compares the two settings of Local Loop-
back Address that are either directed to TAP or Black-
hole. With four 100GbE I/Fs, twelve cores per port is
the best setting we can get, and the figure only shows the
case. 64B case degrades from 180.18 Gbps (at Loop-
backTap) to 80.52 Gbps (at LoopbackBlackhole).

We integrated ACL functionality into Kamuee, by
incorporating the DPDK ACL library. Our ACL im-
plementation in the benchmark test did not include
ANY entry, and just searched in the ACL list only to
find the default ACL entry. Even in that setting, the
ACL function exhibits a significant performance degra-
dation. We show the overhead of the ACL function-
ality: NoACL-LoopbackBlackhole outperforms Loop-
backBlackhole significantly. This suggest that by im-
proving the ACL functionality, we may be able to re-
duce the performance degradation in the future.

Also we show the impact of FullRoute: compar-
ing LoopbackBlackhole (equipped with default4) and
FullRoute-LoopbackBlackhole, we can see the impact
of holding and looking up the BGP full routes is not
large, thanks to the Poptrie technology.

4.3. Overall Throughput in Transaction (PPS)

Figure 5a shows the transaction performance values
in Packet Per Second (PPS), in contrast to the theo-
retical limit labeled as “Wire-rate”. Figure 5b illus-
trates the achievement rate against the ideal wire-rate.
In 64B case, the most realistic setting, i.e., FullRoute-
LoopbackBlackhole, exhibits 111.42 Mpps (achieve-
ment rate: 0.19), while NoACL-LoopbackTap for refer-

ence shows 292.17 Mpps (achievement rate: 0.49). The
NoACL-LoopbackTap’s reference value is not a bad
value, but the realistic FullRoute-LoopbackBlackhole is
not surprisingly fast, and gives a moderate speed perfor-
mance value.

4.4. Effect of compiler optimization

Figure 6 shows the effect of compiler optimization
on the performance of LoopbackTap setting. It demon-
strates that gcc optimization option -O1 and above are
roughly the same performance when the gcc version is
(Ubuntu 5.4.0-6ubuntul 16.04.9) 5.4.0 20160609. Fur-
ther discussion such as which optimization option im-
pacts the most is future work.

4.5. Microflow: the Benchmark of a Single IP Flow

Table 3 gives a list of latency measurements that is
conducted for five minutes or more. Microflow means
the single IP session flow, so the RSS (Receive-Side
Scaling) of NIC cannot split the traffic onto multiple
cores. We have two NUMA types (Same or Cross,
meaning whether the test traffic needs to come accross
the different NUMA nodes), and six Ethernet frame
sizes.

Overall, around 5 Mpps is performed for the single
core forwarding performance. No visible difference in
latency was observed between NUMA types of the traf-
fic. The latency is in average 20-30 microseconds for
the Ethernet frame longer than 512B, but it was larger
(such as 254 and 333 microseconds) in the Ethernet
frame shorter than 256B. We suspect that the effect of
PCI’'s Max Read Request Size is involved [25].

4.6. Packet loss

10 Gbps traffic was measured to test the packet loss
rate in the not-so-heavy traffic load. This time the IP
destination address field is randomized so that the RSS
of NIC can split traffic to multiple cores. The 10 Gbps
traffic was forwarded without major problem regardless
of NUMA type. For the duration of five minutes, a
rather small number of frames are dropped such as less
than 10,000 frames (Table 4). It suggests the packet loss
rate is significantly low to support the real traffic.

4.7. Benchmark for Virtualized Function

In order to investigate the bandwidth performance of
Kamuee in virtual environment, VMs have been created
using KVM with the same configuration as physical en-
vironment. Benchmarking has been done using similar
test environment and default4 routes as described ear-
lier. The VMs set up virtual CPUs with similar NUMA

configuration and number of cores as the physical en-
vironment, with each virtual core using “vcpupin” such
that the virtual cores do not operate on the same physical
core. NICs are directly connected with SR-IOV using
PCI-passthrough.

Figure 7 compares the performance of two cores per
port (2C/P) through twelve cores per port (12C/P). Here,
for packets longer than 1024B, a strange phenomenon is
observed: the performance improves on reducing num-
ber of cores. The cause of this phenomenon can be
IOMMU. The intel iommu is an option related to DMA
for enabling PCI-passthrough in Intel CPUs. Further
investigation of the difference in performance due to
the presence or absence of intel_iommu=on revealed
that performance always degrades when IOMMU is ef-
fective regardless of bare-metal or virtual environment.
This is illustrated in Figure 8.

5. Experience in Interop Tokyo 2018

We deployed Kamuee as a backup core router in the
backbone network of Interop ShowNet 2018. Interop
ShowNet has an experimental Internet backbone net-
work deployed during the three-day Interop event. This
is one of the largest experimental networks and every
year, many product vendors bring in their new products
to test their performance and interoperability. This year,
over 2600 devices and services were connected to the
network and over 450 engineers participated to build
this network. As a backup core router of the network,
Kamuee was responsible for forwarding all the traffic of
this large scale network in case the primary core router
fails.

The hardware specification used for Kamuee in In-
terop ShowNet 2018 is the same as the one in the
previous benchmark, and shown in Table 1. Total of
six routers were connected directly to Kamuee; four
connected using 100GbE-SR4, one connected using
100GbE-LR4, and one connected using 10GbE-LR.
The one using 10GbE-LR was the route reflector. Addi-
tionally, two network traffic generators were connected,
one connected using 100GbE-LR4, and another con-
nected using 10GbE-LR.

Kamuee was configured to provide the best perfor-
mance for user traffic within the hardware constraints,
such as limited number of CPU cores and NICs. We
allocated eight cores per port to forwarder threads for
100GbE ports connected to the primary core router and
the backup aggregation router. As we had limited num-
ber of CPU cores, we chose to only allocate six cores
per port to forwarders for 100GbE ports connected to
the AS border routers and the network traffic generators

Skylake 100GbE x 4 default4 DAC 12cores/port

T T T T T T
600 - Wire-rate -
NoACL-LoopbackTap
& 500 F LoopbackTap |
a NoACL-LoopbackBlackhole
§ LoopbackBlackhole
bt 400 - IIRoute-LoopbackBlackhole ==fe== |
3
= L _
£ 300 /‘\
3 y
= 200 -
e
[s
100 = :\;,) -
0 ! | ! m

64 128 256 512 1024 1518
Frame Size (Bytes)

(a) PPS throughput

Skylake 100GbE x 4 default4 DAC 12cores/port

T T T T T
NoACL-LoopbackTap —A—

FullRoute-LoopbackBlackhole ==f==

Mpps Achievement

0 1 1 1 1 1 1
64 128 256 512 1024 1518

Frame Size (Bytes)

(b) PPS achievement rate

Figure 5: Throughput in PPS

Table 3: Microflow Latency

Avg. over 5 samples mm:ss Latency (us)

[NUMA [Cable [fsize H Tx load [Rx throughput “ Time [#rx-frames [Min. [Avg. [Max.]
Same DAC 64 || 100Gbps/148.8Mpps | 3.53Gbps/5.26Mpps 5:18 1,587,401,784 | 16.66 69.4 | 692.25
Same DAC 128 100Gbps/148.8Mpps | 5.63Gbps/4.76Mpps 6:20 1,823,246,252 | 10.43 71.95 120.82
Same DAC 256 || 100Gbps/148.8Mpps | 8.71Gbps/3.94Mpps 6:31 1,542,903,228 | 12.49 | 253.73 | 884.24
Same DAC 512 || 100Gbps/148.8Mpps | 21.49Gbps/5.05Mpps || 5:34 1,670,079,851 4.86 22.01 112.36
Same DAC 1024 || 100Gbps/148.8Mpps | 38.02Gbps/4.55Mpps || 8:21 2,378,373,317 5.86 22.18 | 89235
Same DAC 1518 100Gbps/148.8Mpps | 61.19Gbps/4.97Mpps || 5:54 1,696,514,167 | 10.87 34.23 184.03
Cross DAC 64 || 100Gbps/148.8Mpps | 3.32Gbps/4.94Mpps 7:16 2,220,846,968 | 16.35 69.46 859.5
Cross DAC 128 100Gbps/148.8Mpps | 5.88Gbps/4.97Mpps 7:01 2,089,926,340 | 12.18 75.63 | 2,183.4
Cross DAC 256 || 100Gbps/148.8Mpps | 6.40Gbps/2.90Mpps 5:12 903,051,580 | 12.02 | 333.07 369.8
Cross DAC 512 || 100Gbps/148.8Mpps | 22.07Gbps/5.19Mpps 11:55 3,661,038,680 4.85 22.06 64.8
Cross DAC 1024 || 100Gbps/148.8Mpps | 39.93Gbps/4.78Mpps || 8:05 2,309,901,569 6.57 22.63 | 950.93
Cross DAC 1518 100Gbps/148.8Mpps | 51.56Gbps/4.19Mpps 12:15 3,194,555,373 9.79 2537 | 812.38

as these ports only forwarded limited number of traffic.
As 10GbE ports do not require many cores to provide
performance, we only allocated two cores per port to
forwarders responsible for the 10GbE ports. In total,
fourty-six cores were used as forwarders to forward the
traffic.

As a core AS router, the routing table of Kamuee
consisted of the Internet full routing table and AS in-
ternal routes. Over 700K routes were registered on the
IPv4 routing table while IPv6 routing table and had only
about 59K routes.

From our experience of operating Kamuee in Interop
ShowNet 2018, we discovered the following key prob-
lems that need to be addressed when running software
routers as core routers using COTS devices:

e Nonoptimal cooling inside the chassis
¢ Differences in NIC implementation per vendor

First problem we encountered was excessive heat-

ing of the NICs. Unlike specialized networking chas-
sis which have optimized cooling for NICs and net-
work processors, the COTS server chassis used for Ka-
muee was not equipped to do so. The temperature sen-
sor readings showed temperature of up to 67 degrees
centigrade while the maximum operating temperature
for100GbE-LR4 QSFP28 module is 70 degrees centi-
grade [26]. This calls for some additional cooling de-
sign while using COTS hardware as high speed network
device to avoid errors due to overheating.

Second problem we faced is the difference in imple-
mentations of NIC functionalities and their correspond-
ing DPDK drivers per vendor. Kamuee’s initial design
used KNI as the packet interface between the dataplane
and kernel. Though it worked fine for NICs from a
single vendor, it malfunctioned when we started to use
NICs from multiple vendors simultaneously. We needed
to switch back to the slower Tun/Tap kernel interface to
address the malfunctioning problem.

Table 4: 10Gbps traffic packet loss

Avg. over 5 samples mm:ss
NUMA | Cable [fsize H Tx load Rx throughput H Time #tx-frames #rx-frames [#loss” [loss-rate*
Same DAC 64 || 10Gbps/14.88Mpps | 10.00Gbps/14.88Mpps || 5:22 4,793,907,953 | 4,793,899,029 | 8,912 | 1.86e-06
Cross DAC 64 || 10Gbps/14.88Mpps | 10.00Gbps/14.88Mpps || 5:13 4,666,135,849 | 4,666,135,251 592 | 1.27e-07

" The tester’s tx, rx, and loss counts didn’t seem to be consistent for unknown reason.

* Loss-rate is calculated by dividing #loss by #tx-frames.

Skylake 100GbE x 4 default4 DAC 12cores/port

400 | T T T PE E :E]
350 | B -
& 300 |- -
o
S 50t -
Bl
g 200 - _
3 10 -03 :a: T
£ 100 | 92 g -
50 |- -00 i
1 1 1 1 1 -g-(I)0

64B 128B 256B 512B 1024B1518B
Packet Size

Figure 6: Compiler Effect

Kamuee is the first ever software router to be used in
Interop Shownet backbone as one of the core routers,
and throughout the event Kamuee ran properly without
any glitches or errors. Kamuee lived up to the chal-
lenge of a fully functional software router interoperable
with most of the world’s leading router vendors, namely,
Cisco, Juniper, and Huawei, and this is a promising
stepping stone for its future commercial success as a
mainstream software router.

6. Conclusion and future work

We revealed the tricks for high-performance software
router design: we think the run-to-completion model in
DPDK, the Poptrie algorithm, and the keep it as sim-
ple as possible principle, are the main grounds for our
superior performance.

We show a good performance benchmark value of
Kamuee: for 512B-sized frames or longer, Kamuee can
forward around 349.60 Gbps random destination traffic
with BGP full routes (at FullRoute-LoopbackBlackhole
in Figure 4). Further intralaboratory evaluation of
12C/P at 64B frame in LoopbackTap (Figure 3a), the
Kamuee showed the potential of forwarding 292.17
Mpps.

SR-IOV VM on KVM 100GbE x 4 default4 100G-SR4

400 | T T T T T T]
350 | .
& 300 |- _
o
S o5t -
2
2 200 | .
=4
3 150 -
£ 100 | -
50 |
0

64B 128B 256B 512B 1024B1518B
Packet Size

Figure 7: KVM cores per port effect

We have seen many unstable characteristics of Ka-
muee, that might be common to the general software
router. The throughput performance fluctuated over
time, in a significantly large range of a few tens of Gbps.
Further, we sometimes saw performance degradation
that we cannot explain (yet). Since the performance of
the software router is very high and promising, the need
to address the aforementioned drawbacks becomes even
more imperative.

Even with some drawbacks, our Interop experience
proved that Kamuee satisfies the necessary functions
and quality needed to sustain the large scale IP infras-
tructure. Overall, Kamuee demonstrated a promising
performance for the use of future virtual network func-
tions in the NFV environment.

As an open problem for the future network, the algo-
rithms for the Access Control List (ACL) and firewall
applications that maintain high performance even with
some hundreds of thousands to some millions of ACL
entries are the next challenge in this field.

References

[1] G. P. Katsikas, T. Barbette, D. Kostié, R. Steinert, G. Q. M.
Jr., Metron: NFV service chains at the true speed of the under-
lying hardware, in: 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), USENIX

Throughput (Gbps)

[2]

[3]

[4]

[3]

[6]

(7]

[8]

[9]

PCI Configuration Effect, 1518B 100GbE

400 F T]]] T T T T]
350 B
250 - % =S¢ a2 i
200 B
150 B
100 L iommu=on VM SR-IOV 1VF i
iommu=on VM PCI passthrough
50 | iommu=on Baremetal -
| | iomlmuzolff BarlemetE}I
0

0 2 4 6 8 10 12 14 16 18
Number of Cores per Port

Figure 8: PCI configuration effect

Association, Renton, WA, 2018, pp. 171-186.

URL https://www.usenix.org/conference/nsdi18/
presentation/katsikas

M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta,
B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow, J. A.
Docauer, J. Alpert, J. Ai, J. Olson, K. DeCabooter, M. de Kruijf,
N. Hua, N. Lewis, N. Kasinadhuni, R. Crepaldi, S. Krishnan,
S. Venkata, Y. Richter, U. Naik, A. Vahdat, Andromeda:
Performance, isolation, and velocity at scale in cloud network
virtualization, in: 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), USENIX
Association, Renton, WA, 2018, pp. 373-387.

URL https://www.usenix.org/conference/nsdi18/
presentation/dalton

Intel, DPDK — Data Plane Development Kit, http://dpdk.
org/.

H. Asai, Y. Ohara, Poptrie: A compressed trie with population
count for fast and scalable software ip routing table lookup, in:
Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM 15, 2015.

P. E. McKenney, J. D. Slingwine, Read-copy update: Using ex-
ecution history to solve concurrency problems, in: Parallel and
Distributed Computing and Systems, 1998, pp. 509-518.

Y. Ohara, Y. Yamagishi, Kamuee zero: the design and imple-
mentation of route table for high-performance software router,
in: Proceedings of Internet Conference 2016, IC 2016, 2016.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
V. Sekar, Making middleboxes someone else’s problem: Net-
work processing as a cloud service, in: Proceedings of the
ACM SIGCOMM 2012 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communica-
tion, SIGCOMM 12, ACM, New York, NY, USA, 2012, pp.
13-24. doi:10.1145/2342356.2342359.

URL http://doi.acm.org/10.1145/2342356.2342359
N. W. Paper, Network functions virtualisation: An introduction,
benefits, enablers, challenges & call for action. issue 1 (Oct
2012).

B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong,
P. Cheng, E. Chen, Clicknp: Highly flexible and high perfor-
mance network processing with reconfigurable hardware, in:
Proceedings of the 2016 ACM SIGCOMM Conference, SIG-
COMM 16, ACM, New York, NY, USA, 2016, pp. 1-14.
doi:10.1145/2934872.2934897.

URL http://doi.acm.org/10.1145/2934872.2934897

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, S. Shenker,
Netbricks: Taking the v out of NFV, in: 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
16), USENIX Association, Savannah, GA, 2016, pp. 203-216.
URL https://www.usenix.org/conference/osdil6/
technical-sessions/presentation/panda

J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bi-
fulco, F. Huici, Clickos and the art of network function virtual-
ization, in: 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), 2014.

J. Hwang, K. K. Ramakrishnan, T. Wood, Netvm: High per-
formance and flexible networking using virtualization on com-
modity platforms, IEEE Transactions on Network and Service
Management 12 (1) (2015) 34-47.

R. Poddar, C. Lan, R. A. Popa, S. Ratnasamy, Safebricks:
Shielding network functions in the cloud, in: 15th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 18), USENIX Association, Renton, WA, 2018, pp.
201-216.

URL https://www.usenix.org/conference/nsdi18/
presentation/poddar

M. Honda, G. Lettieri, L. Eggert, D. Santry, PASTE: A network
programming interface for non-volatile main memory, in:
15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), USENIX Association, Renton,
WA, 2018, pp. 17-33.

URL https://www.usenix.org/conference/nsdil18/
presentation/honda

A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki,
S. Ratnasamy, S. Shenker, Resq: Enabling slos in network
function virtualization, in: 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18),
USENIX Association, Renton, WA, 2018, pp. 283-297.

URL https://www.usenix.org/conference/nsdil8/
presentation/tootoonchian

S. Choi, B. Burkov, A. Eckert, T. Fang, S. Kazemkhani,
R. Sherwood, Y. Zhang, H. Zeng, Fboss: Building switch soft-
ware at scale, in: Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, SIG-
COMM ’18, ACM, New York, NY, USA, 2018, pp. 342-356.
doi:10.1145/3230543.3230546.

URL http://doi.acm.org/10.1145/3230543.3230546

8. Poll Mode Driver — Data Plane Development Kit 18.08.0 doc-
umentation, http://doc.dpdk.org/guides/prog_guide/
poll_mode_drv.html.

M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Ian-
naccone, A. Knies, M. Manesh, S. Ratnasamy, Routebricks: Ex-
ploiting parallelism to scale software routers, in: Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP *09, 2009.

S. Hemminger, Making a virtual router a reality with dpdk,
rcu and Omq, https://events.static.linuxfound.org/
sites/events/files/slides/DPDK_RCU_OMQ.pdf.
Universal TUN/TAP device driver., https://wuw.kernel.
org/doc/Documentation/networking/tuntap.txt.

33. Tun—Tap Poll Mode Driver — Data Plane Development Kit
18.08.0 documentation, https://doc.dpdk.org/guides/
nics/tap.html.

Ferruh Yigit, Interworking with the Linux Kernel, https:
//dpdksummit .com/Archive/pdf/2016Userspace/
Day02-Session0O6-FerruhYigit-Userspace2016.pdf.
VPP Sandbox/router - fd.io, https://wiki.fd.io/view/
VPP_Sandbox/router.

Hasan Alayli, lthread, a multicore enabled coroutine library
written in C, https://github.com/halayli/lthread.

(25]

[26]

Y. Ohara, Y. Yamagishi, S. Sakai, A. D. Banik, S. Miyakawa,
Revealing the necessary conditions to achieve 80gbps high-
speed pc router, in: Proceedings of the Asian Internet Engineer-
ing Conference, AINTEC 15, 2015.

Mellanox, Mellanox 100GbE QSFP28 LR4 Optical
Transceiver, https://www.mellanox.com/related-docs/
prod_cables/PB_MMA1L10-CR_100GbE_QSFP28_LR4_
Transceiver.pdf.

10

