
Improving network stack

Why do we need to improve the network stack in today's operating
systems ?

Luigi Rizzo
Università di Pisa

http://info.iet.unipi.it/~luigi/research.html

Work supported by H2020 project SSICLOPS

Summary

Network stack overview
Performance considerations
Useful techniques
Some case studies

Internet Conference 2016

Luigi Rizzo, Univ. di Pisa

http://info.iet.unipi.it/~luigi/research.html


 

Part 1: Network stack overviev

Network stack: definition

code that lets applications talk to the network
layered as it handles several different problems

Usually in-kernel for multiple reasons:
access to shared resources
security
efficiency
some convenience (but some rigidity, too)



Network stack tasks

accumulate data (sockets, in and out)
implement protocols (TCP, cong. control, flow control)
manage resources (L4 ports, memory)
interact with network (ARP, routes)
talk to the hardware (device driver)

Operation triggered by
user input
network events
timers

Layering comes naturally

Traffic characteristics and requirements

Outgoing (Upstream, app to network)
trusted data (once in the kernel)
controlled

Incoming (Downstream, network to app)
untrusted
uncontrolled



Outgoing path

syscall
buffering
protocol processing
routing
(scheduling / virtual switching ...)
device output

Outgoing path - code structure

Independent software layers
sockets
TCP/UDP/other transport protocol
IP (network layer), MAC encapsulation
device driver

Direct function calls
immediate feedback, process to completion

Some critical sections
mostly in the device driver, occasionally in higher layers (e.g. socket buffers)



Process to completion (or not)

"do at once all the processing required by a piece of data"
good match with immediate calls into next layer
maximises useful work

Not always possible
window/output queue full, interrupt handler too long
intermediate queues required to break the flow
need balanced producers and consumers
beware of livelock

Incoming path

interrupt handling
drain device
validate traffic
demultiplex
protocol processing
notify clients



Incoming path - code structure

Packets come at random times
process to completion might be inappropriate
better use a short interrupt handler, wakeup interrupt thread

Interrupt thread (NAPI)
most of the work, up to socket buffers
notify client

Client thread
finally consume data

Uniprocessor OS

common in the 90's, now called unikernels
no concurrency issues: just disable interrupts
efficient code
cannot use multiple cores



Multiprocessor OS

locks protect critical sections
multiple critical sections while processing one packet
lock contention may become significant
better solutions (e.g. RCU) for read-mostly data
memory latency may become critical at high speed

Network stack features

Existing network stacks mostly target user applications
good support for TCP (client and server)
big companies actively developing features
hardware vendors eager to follow up

Ossification due to in-kernel implementation
hard to update clients (too many, too varied)
sometimes contrived workarounds (server side, QUIC, ...)



Network stack features (2)

Packet I/O not well supported
niche application (compared to billions of phones and laptops)
dedicated hardware can be more efficient

Cloud and virtualization change the scenario
hardware based solution may not be viable anymore

Why do we need to improve the network stack ?

Missing features
better support for packet I/O and software switching
more flexibility in adding features
better support for virtualization



 

Part 2: network stack performance

Network stack performance

Defined by multiple metrics
throughput
latency
efficiency
scalability

Tradeoffs are unavoidable



Performance metrics: throughput

Measured in bits per second or packet per second
the latter is usually the relevant one
may depend heavily on traffic patterns
tradeoff with latency

Beware of livelock
throughput drops as offered load increases
can result from adversarial load, or poor design choices

Performance metrics: latency

Time to traverse the stack
also look at distribution, not just average/median
main component is usually queueing delay (see bufferbloat)
next come CPU (un)availability, timer and interrupt delays

Normally tradeoff with throughput, energy efficiency
interrupt moderation helps throughput but increases latency
busy wait reduces latency but kills efficiency



Performance metrics: efficiency

Work = useful packet processing + wait for data + cleanup
Interrupt or busy wait
interrupts and notifications are expensive
busy wait improves throughput and latency
optimal strategy varies with load

Even more surprises with pipelines
unbalanced stages may worsen all metrics

Performance metrics: scalability

Locking is an easy way to protect shared data structures
sprinkle locks on UP code base to make it SMP-capable
fine-grained locking to increase parallelism
can scale really poorly in multicore/multisocket systems
often need ad-hoc solutions and code restructuring



Network stack performance status

Not (yet) problematic on the client side
TCP heavily optimized (also with HW acceleration)
1-10 Gbit/s easy to achieve

Server side problematic at 40-100 Gbit/s
both CPU and HW bottlenecks

Very poor packet I/O performance
at least with standard APIs
scheduling also problematic

Performance improvement strategy

First, identify bottlenecks
CPU, memory and link speeds progress in large steps and uncoordinated ways
in most cases, throughput improves faster than latency
latency sensitivity is harder to deal with
CPU bound workloads can be addressed
not much to do with HW bound workloads



CPU bound workloads: hardware offload

One client/core may be unable to saturate the link
use hardware offload for checksums, segmentation, encryption, filtering
reduced CPU usage can improve throughput
can be implemented with small code changes

CPU bound workloads: multiqueue

Still not fast enough (e.g. inbound processing):
run multiple independent clients in parallel
multiqueue NICs reduce contention in the device driver
again, requires small code modifications
does not accelerate individual clients



CPU bound workloads: simplify the stack

Some workloads need faster APIs
simplify the stack, see netmap or XDP
exploit batching and zero copy
provide efficient APIs

Multiple variants of this concept
simplification is the key feature, not userspace processing

CPU bound workloads: pipelined structure

split processing vertically
insert non-blocking mailboxes between stages
can exploit parallelism even for a single client



CPU bound workloads: dedicated cores

pipeline stages can have different number of workers
some can be used for inherently sequential functions, such as
scheduling
equivalent to having dedicated (co)processors
helps addressing lock contention

CPU bound workloads: reduce synchronisation cost

Mailboxes and queues require expensive notifications
hw and sw interrupts must find and reach the target thread
interact with scheduler, Inter Processor Interrupts
can easily take microseconds

Mitigation techniques
interrupt moderation: rate limit
batching: amortize
busy wait/short sleep: shift load on consumer



CPU bound workloads: introduce batching

Impractical to rewrite the stack to support batching
introduce MORE_FLAG in metadata
default off, each enqueue calls notify()
incrementally deployable, suppress notify() if more data known to come

Initially proposed in QEMU networking (Maffione 2013)
dismissed as "not used in Linux" (N.I.H.)
rediscovered as XMIT_MORE in Linux

CPU bound workloads: better algorithms

problems have finite size, look at constants in addition to asymptotic complexity
be aware of and exploit hardware features (caches, memory, special instructions)
look at approximate solutions



CPU bound workloads: examples of better algorithms

DXR (lookups, finite size problem);
poptrie (special CPU instruction)
huge pages (reduce TLB misses)
QFQ (O(1) scheduling thanks to approximate timestamps)
RCU (implicit coordination)
RouteBricks (lock removal via dedicated paths)
PSPAT (centralised scheduler thread)

CPU bound workloads: VM networking

Expensive VM exits kill packet I/O performance
virtio mitigates exits with mailboxes and helper threads
passthrough moves device driver to the guest
virtual passthrough gives hardware independence/zero copy



HW bound workloads

Eventually, hardware will become the bottleneck
PCIe bandwidth
PCIe transaction rate (NIC's limited)
low performance NICs (most cannot do line rate)

Buy better hardware!
or, make good use of existing one
find good operating region, rate limit HW access

Why do we need to improve the network stack ?

Poor performance
we have several good solutions
use them!



 

Part 3: Overview of existing solutions
Various kernel/network stack/layer bypass

DPDK, netmap, XDP
Fast switch fabric

mswitch, custom DPDK-based tools
Virtualization support

virtual passthrough
Custom applications

PSPAT packet scheduling

Bypass techniques

Motivation: network stack inadequate for packet I/O
full bypass: DPDK
network stack bypass: netmap
integrated filtering: XDP



Full bypass: UIO and DPDK

Take the entire device driver to userspace.
PROS

convenient workaround for lack of kernel support
only need UIO to export the PCI device to userspace
userspace device driver needs to do all device programming

CONS
no interrupt or event support
reinjection via socket-like API
hard to share resources

Network stack bypass: netmap

Keep driver in hardware, provide user API for I/O and
synchronisation

complete ecosystem, not just physical device
useful for programmable switches, userspace protocol
demultiplexing



Integrated filtering: XDP

device driver RX hook just before creating the sbk
call an eBPF program to determine packet's fate
included in Linux

Currently mostly a proof of concept
poor support for generic packet processing or userspace I/O
needs in-kernel development

Fast switch fabric

VALE/mSwitch provide a fast programmable in-kernel dataplane
show that high speed software dataplanes are possible
useful for L2 as well as protocol demultiplexing
enabler for embedding protocols into user applications



Fast VM networking

Various techniques to amortize VM exits
virtio and vhost-net is a first start, shared host/vm queue with helper thread
hardware passthrough removes data copies but binds VM to hardware
virtual passthrough (possibly using the netmap API) gives complete hardware independence

Pipeline performance

pipeline is a common pattern in networking software
balance between stages is critical for performance at high load
always full or always empty queue requires frequent expensive notifications
same as livelock, important to understand the phenomenon and remedies



PSPAT, software scheduling

First block in the network path for VMs
there are legitimate users with high PPS
need to protect the virtual switch and the rest of the stack

Hardware does not always give perfect isolation
the bus (PCIe) can be a bottleneck
scheduling after the bottleneck is ineffective

Traditional Software Packet Scheduler

PROS
no hardware dependencies
large choice of algorithms

CONS
heavy lock contention in accessing the scheduler
under congestion I/O becomes serialized
scalability can be problematic

TC delivers 2 Mpps, decreasing with number of clients



Hardware Packet Schedulers

PROS
fully parallel down to the NIC
reduced system load due to HW offloading

CONS
limited choice of algorithms
the bus is still a point of contention.

PCIe access issues

PCIe arbitration is round robin, not programmable
PCIe service rate is limited by the NIC
PCIe bus can saturate as well



Dilemma

SW flexible but slow, HW not as good as we would like
1. Denial: we don't need fast schedulers

what about NFV ?
2. Faith: hardware will get better

what about existing hardware ?
3. Various approximate solutions

trivial schedulers (FIFO, DRR: fast but poor delay guarantees)
active queue management (RED, CODEL: rely on everyone behaving)
bounded number of queues: rely on quiet neighbours

PSPAT: Packet Scheduling with PArallel Transfers

Decouple scheduling and transmission
a dedicated arbiter thread runs the SA (sequential)
traffic is released at link rate to the device driver
possibly one or more threads perform transmission in parallel

Results
reduced contention, increased parallelism
large speedup compared to TC
the architecture permits a worst case analysis



PSPAT implementation

Two versions
in-kernel, for complete compatibility with TC:

intercept traffic in __dev_queue_xmit(),
deliver to dev_hard_start_xmit()
reuses Linux QDISC code
kernel module to implement mailboxes and threads

userspace, for fast prototyping and optimized performance
supports userspace networking (netmap, DPDK...)
can use fast scheduling code from dummynet

Performance analysis

Metrics:
throughput and latency

Platforms:
I7 with 40G NIC and Linux 4.7 (in-kernel PSPAT)
dual Xeon E5-2640 (userspace)

Sources (one per core, pinned):
UDP sockets (not very fast)
pkt-gen (the netmap version), very fast
Linux pktgen bypasses __dev_queue_xmit()

Packet schedulers:
none (HW), TC, PSPAT



Throughput measurements

Clients send as fast as possible
variable number of clients
schedulers use QFQ (DRR is marginally faster)
TC and PSPAT rates higher than scheduler's capacity
measurements in PPS as that is the relevant metric

Throughput with regular UDP (I7)

2x speedup (limited by the qdisc code)



Throughput for userspace PSPAT (Xeon)

High speed I/O

 
Scheduling decisions alone are extremely fast
using netmap we are in 15-20 Mpps territory



One way latency measurements

Experiments with different link rates and number of clients
one client has weight=100, sends at half the reserved bandwidth
other clients have weight=1, send as fast as possible

Theory says latency is proportional to MSS/RATE

One way latency measurements (1)

No big surprises for PSPAT:
a couple of extra us due to rate-limited scans and handoffs
Note the huge effect of congestion on the PCIe bus



Latency versus rate, I7 + linux 4.5

Conclusions

Network stacks missing in four areas
packet I/O
switching performance
VM support
agile protocol replacement

There are useful solutions to improve all of these areas
http://info.iet.unipi.it/~luigi/research.html

http://info.iet.unipi.it/~luigi/research.html

