An algebraic framework for a unified view of route-vector protocols

João Luís Sobrinho

Instituto Superior Técnico, Universidade de Lisboa

Instituto de Telecomunicações

Portugal

- 1. Context for route-vector protocols (BGP, etc.)
- 2. Basics of the algebraic theory of routing
- 3. Optimality of paths (IGRP)
- 4. Usable connectivity and visibility (BGP)
- 5. Termination in loop-free states (BGP)
- 6. Survey of applications
- 7. Conclusions

1. Context for route-vector protocols (BGP, etc.)

Route-vector protocols

- Routing
 - Selection of paths in a network
- Routing protocols
 - Distributed algorithms to select paths in a network
- Route-vector protocols
 - Separate computation per destination
 - Routes learned from neighbors; "best" route announced to neighbors

Route-vector protocols in the Internet - I

- Border Gateway Protocol (BGP)
 - The inter-domain routing protocol of the Internet
 - Routing policies: LOCAL-PREF, AS-PATH, COMMUNITY, MULTI-EXIT-DISC, etc.
 - Used as well in the enterprise and in data-centers
- Routing Information Protocol (RIP)
 - Shortest paths

Route-vector protocols in the Internet - II

- Interior Gateway Routing Protocol (IGRP) and Enhanced IGRP (EIGRP)
 - Quality-of-service paths
- Interconnection of routing instances
 - Administrative Distance and Route Redistribution
- Wireless networks
 - Many metrics: hop-count, capacity, loss rate, interference level, energy consumption, etc.

Issues with route-vector protocols

- Non-termination (oscillations)
- Forwarding loops
- Sub-optimal paths
- Constraints on the usability of paths
- Hidden destinations

Limitations of case-by-case analysis

- Easy to overlook undesirable behaviors
- Repetition of arguments and of errors
- No insight across applications
- Little margin for automated management of routing configurations

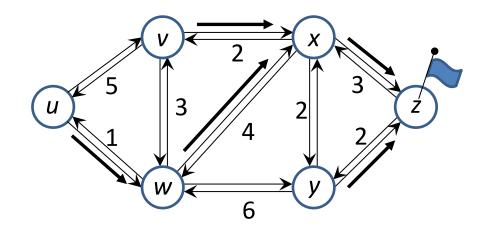
Algebraic theory of routing

- Provides unified view of route-vector protocols
- Relates local routing decisions to global routing behaviors
- Facilitates specification, design, configuration, and analysis
- Gives lots of insight!

2. Basics of the algebraic theory of routing

Shortest-path routing

- Each link has a length
- Length of a path is the **sum** of the lengths of its links
- Select paths of **minimum** length (shortest paths)



Lengths the same in both directions

Destination

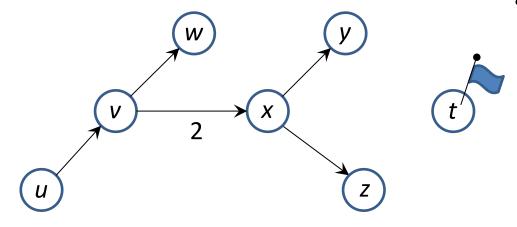
→ Data-packets

Distance-vector protocol - I

Separate computation per destination

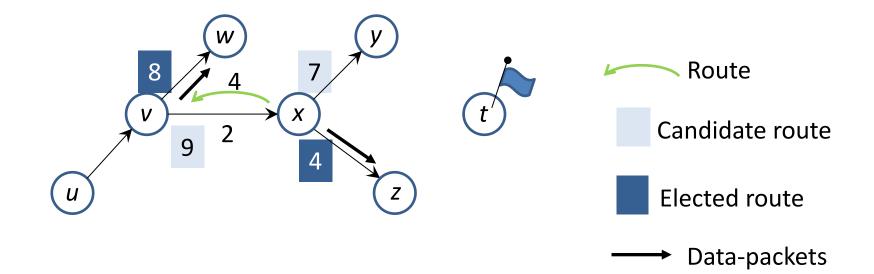
Only shown:

- Destination t
- Link *vx* of **length** 2
- Neighbors of *v* and of *x*



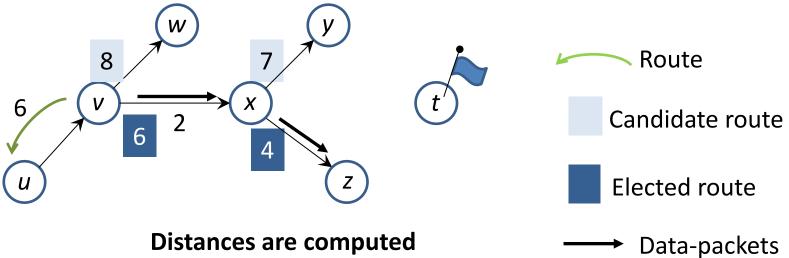
Distance-vector protocol - II

- Routes associate a **length** to a destination
- Local state: candidate routes and elected route



Distance-vector protocol - III

- Reception of a route
 - extension into a candidate route (+)
 - election of a route (min)
 - elected route sent to neighbors



Data-packets travel along shortest paths

Question about the algorithm

 Can the simple algorithm underlying distance-vector protocols be used to compute other types of paths, related, for instance, to quality-of-service?

Question about the algorithm

 Can the simple algorithm underlying distance-vector protocols be used to compute other types of paths, related, for instance, to quality-of-service?

Idea: create framework for generic path attributes and how they are combined by the operations of election and extension

Routing algebra $(\Sigma, \bullet, \Pi, \bigotimes)$

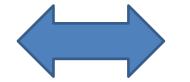
- Attributes, Σ ; unreachability, $\in \Sigma$
- Election operation, ⊓
 - Selectivity: $\alpha \sqcap \beta$ is either α or β , for $\alpha, \beta \in \Sigma$
 - Commutativity: $\alpha \sqcap \beta = \beta \sqcap \alpha$, for $\alpha, \beta \in \Sigma$
 - Associativity: $(\alpha \sqcap \beta) \sqcap \gamma = \alpha \sqcap (\beta \sqcap \gamma)$, for $\alpha, \gamma, \beta \in \Sigma$
 - Identity: $\alpha \sqcap \bullet = \alpha$, for $\alpha \in \Sigma$
- Extension operation, \otimes
 - Associativity: $(\alpha \otimes \beta) \otimes \gamma = \alpha \otimes (\beta \otimes \gamma)$, for $\alpha, \gamma, \beta \in \Sigma$
 - Annihilation: $\alpha \otimes \bullet = \bullet$, for $\alpha \in \Sigma$

[Sobrinho, 2002]

Equivalence between election and order

$$\alpha \leq \beta$$
 if $\alpha \sqcap \beta = \alpha$ for $\alpha, \beta \in \Sigma$

Election operation \square

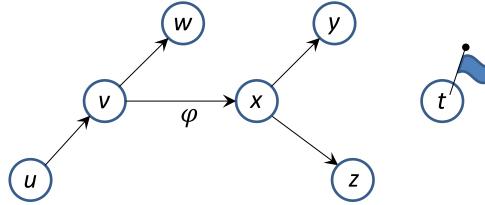


Route-vector protocol - I

• Separate computation per destination

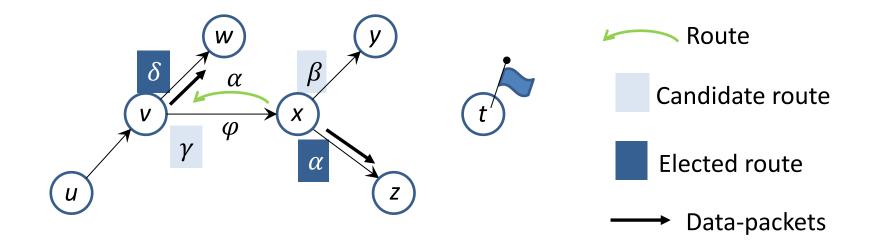
Only shown:

- Destination t
- Link *vx* with **attribute** φ
- Neighbors of *v* and of *x*



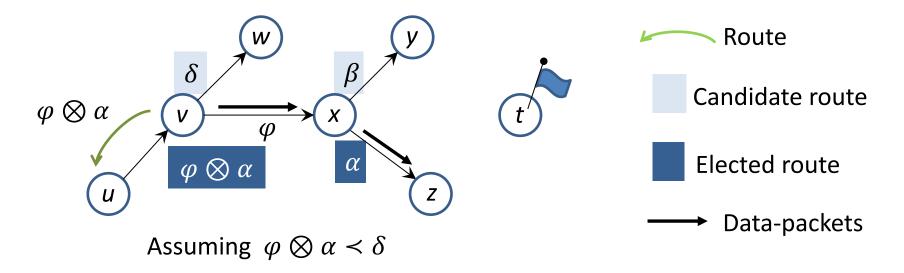
Route-vector protocol - II

- Routes associate an **attribute** to a destination
- Local state: candidate routes and elected route

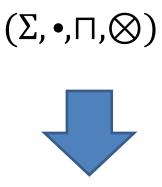


Route-vector protocol – III

- Reception of a route
 - **extension** into a candidate route (\otimes)
 - election of a route (□)
 - elected route sent to neighbors



Routing algebras and shortest paths



 $(\mathbb{Z} \cup \{+\infty\}, +\infty, \min, +)$

Route-vector protocol Distance-vector protocol

In practice, lengths are finite and addition is truncated

3. Optimality of paths (IGRP)

- Each link has a **delay** and a **file-transfer-time**
- Delay of a path: **sum** of the delays of its links
- File-transfer-time of a path: **maximum** file-transfertime among those of its links
- Select paths of minimum latency (quickest paths)
 latency of a path: delay plus file-transfer-time

Quickest-path routing algebra

• Attributes

- Pairs (d, t), with delay d and file-transfer-time t

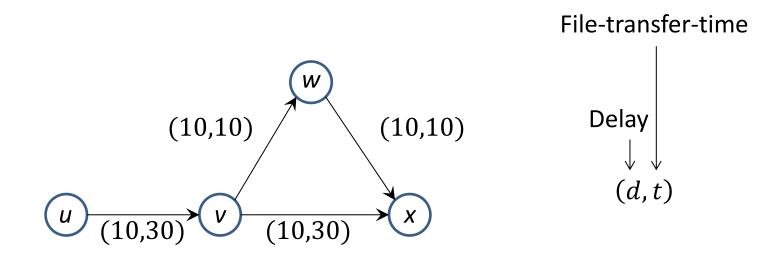
Total order

$$-(d_1, t_1) \prec (d_2, t_2)$$
 if $d_1 + t_1 < d_2 + t_2$

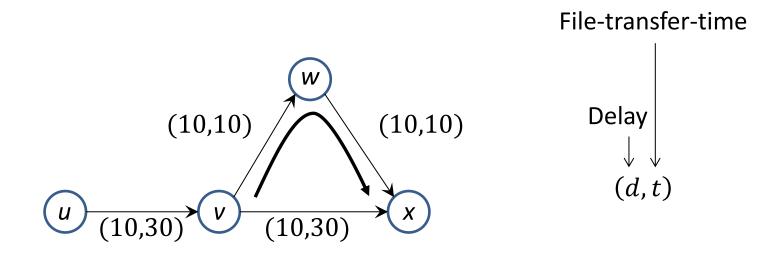
Extension

 $-(d_1, t_1) \otimes (d_2, t_2) = (d_1 + d_2, \max\{t_1, t_2\})$

Quickest-path network - I



Quickest-path network - II



Pair of path vwx

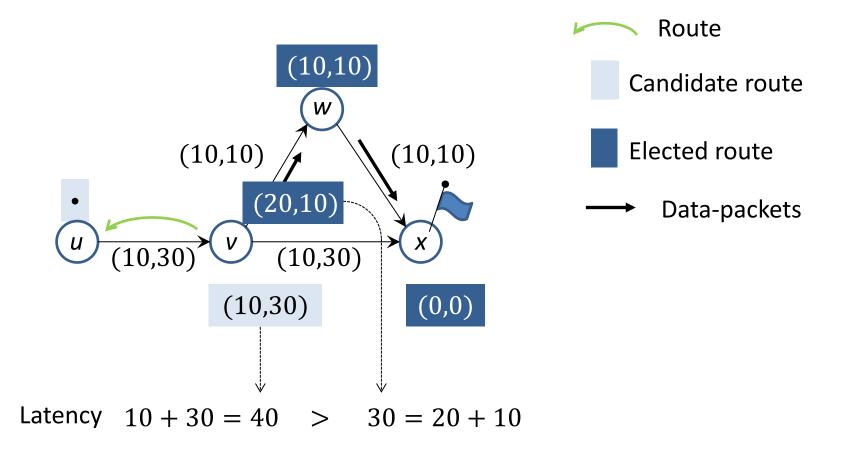
 $(10, 10) \otimes (10, 10) = (10 + 10, \max\{10, 10\}) = (20, 10)$

Latency of path vwx

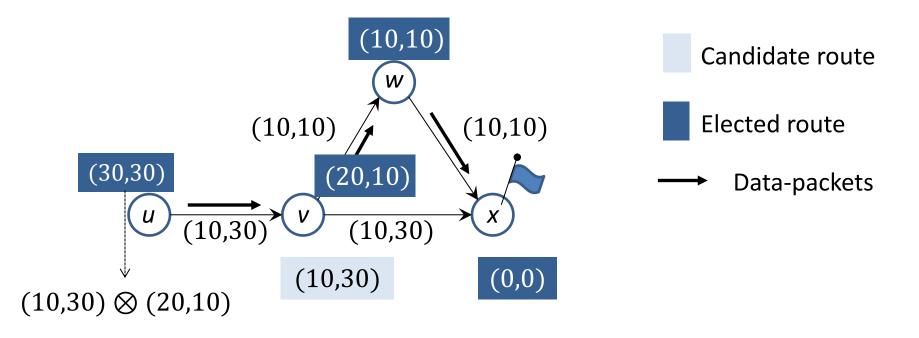
$$20 + 10 = 30$$

27

Internal Gateway Routing Protocol (IGRP)

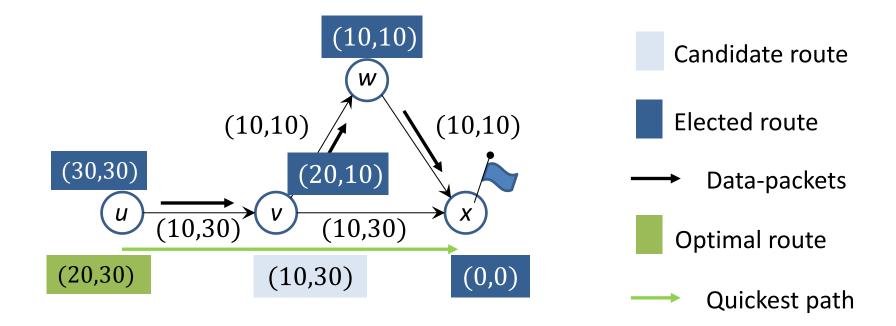


IGRP



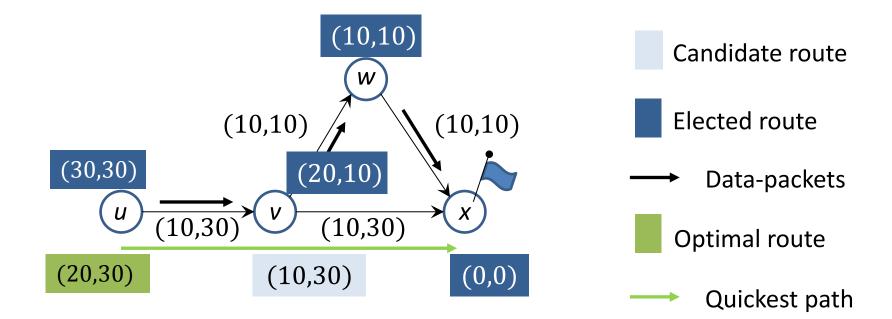
u elects route (30, 30), latency 60, corresponding to path uvwx

IGRP: routes are not optimal



Optimal route at u is (20, 30), latency 50, corresponding to path uvx!

IGRP: no quickest paths

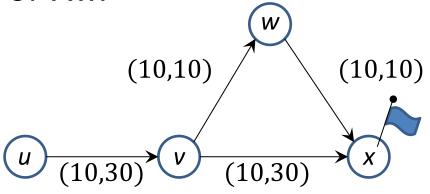


Data-packets do not travel along quickest paths!

[Sobrinho, 2002] [Gouda and Schneider, 2003]

Semantic explanation

- vwx has smaller file-transfer-time, but larger delay, than vx; latency of vwx is smaller
- uv has a large transfer-time, meaning a low arrival rate of data-packets at v
- Once at v, data-packets do not benefit from the smaller transfer-time of vwx



Algebraic explanation

• The pair of link *uv* inverts the order between pairs

$$(10,10)$$
 (10,10)
 $(10,30)$ (10,30) = (20,30) (20,10)
 $(10,30) \otimes (20,10) = (30,30)$ (10,30)

Question about optimality

• When does a route-vector protocol compute optimal routes?

• Attribute γ is isotone if extension does not invert preferences

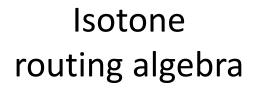
$$\forall_{\alpha,\beta} \ \alpha \leq \beta \ \Rightarrow \gamma \otimes \alpha \leq \gamma \otimes \beta$$

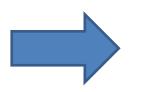
- Extension distributes over election

 $\forall_{\alpha,\beta} \ \gamma \otimes (\alpha \sqcap \beta) = (\gamma \otimes \alpha) \sqcap (\gamma \otimes \beta)$

 Routing algebra is isotone if every attribute is isotone

Optimality of routes



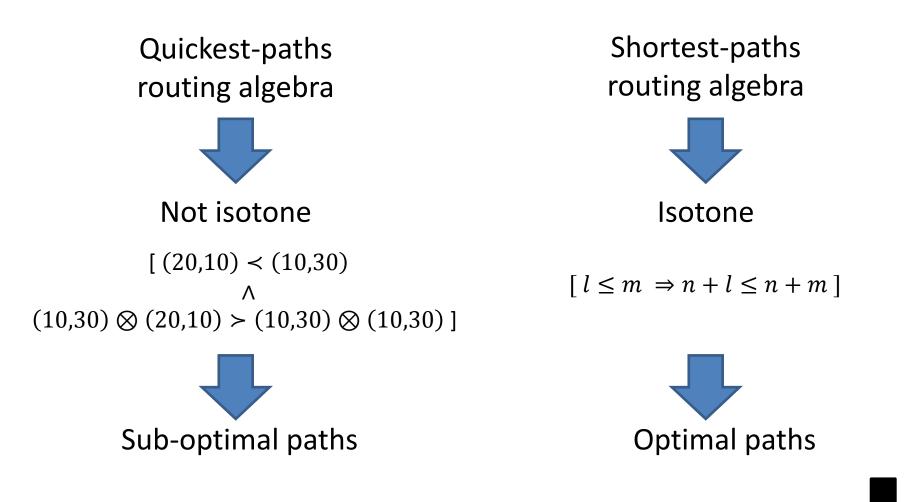


Optimality, every network, every destination

Distributed computation of a global optimum

[Sobrinho, 2002]

Isotonicity: quickest and shortest paths



Outline

4. Usable connectivity and visibility (BGP)

Inter-domain routing

- Internet: the network of networks
 - Tens of thousands of Autonomous Systems (ASs)
 - Hundreds of thousands of destination IP prefixes
- Border Gateway Routing Protocol (BGP)
 - Route-vector protocol running among the ASs
- Routing policies

ASs configure BGP to satisfy their economic interests

Economic relationships between ASs

- Provider-customer relationship
 - Customer pays provider to transit its traffic

- Peer-peer relationship
 - Peers exchange traffic between them and their customers often without monetary compensations

Gao-Rexford (GR) policies: routes

- BGP messages carry reachability information
 - Autonomy and privacy
- GR routes
 - Customer route: reachability learned from a customer
 - Peer route: reachability learned from a peer
 - Provider route: reachability learned from a provider
 - Unreachability

GR policies: preferences and exports

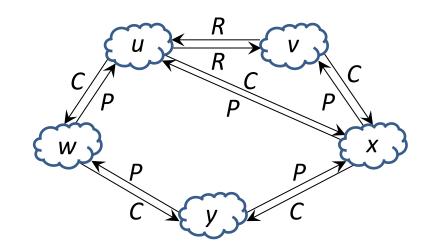
• GR preferences

- First customer routes
- Then peer routes
- Then provider routes
- GR exports
 - All routes exported to customers
 - Customer routes exported to all neighbors

[Gao and Rexford, 2001]

GR network

- *u* and *v* are peers *v* is a provider of *x*
- *u* is a provider of *w* and *x w* and *x* are providers of *y*



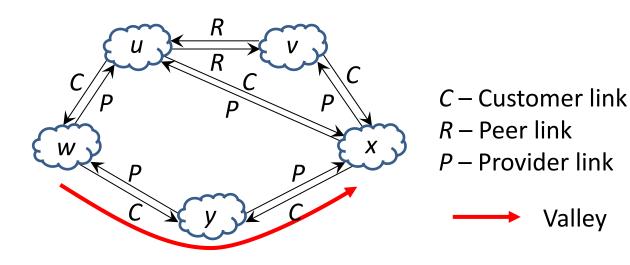
- *C* Customer link, provider to customer
- *R* Peer link, peer to peer
- *P* Provider link, customer to provider

GR network: unusable paths

• Valley

- Customer or peer link then peer or provider link

- Unusable paths
 - Any path containing a valley



A. Are unusable paths inherent to routing based exclusively on reachability information?

B. Can we quantify the usable connectivity of a network?

Questions about algebraic modeling

• Can **arbitrary** routing policies set with BGP be modeled algebraically?

Questions about algebraic modeling

 Can arbitrary routing policies set with BGP be modeled algebraically?

Idea: generalize extension from a binary operation to a set of maps on attributes

Routing algebra $(\Sigma, \bullet, \Pi, \mathcal{T})$

- Attributes, Σ ; unreachability, $\bullet \in \Sigma$
- Election operation, □
 - Selectivity: $\alpha \sqcap \beta$ is either α or β , for $\alpha, \beta \in \Sigma$
 - Commutativity: $\alpha \sqcap \beta = \beta \sqcap \alpha$, for $\alpha, \beta \in \Sigma$
 - Associativity: $(\alpha \sqcap \beta) \sqcap \gamma = \alpha \sqcap (\beta \sqcap \gamma)$, for $\alpha, \gamma, \beta \in \Sigma$
 - Identity: $\alpha \sqcap \bullet = \alpha$, for $\alpha \in \Sigma$
- Maps on Σ , called extenders, \mathcal{T}

 - Closure: $ST \in \mathcal{T}$, for $S, T \in \mathcal{T}$ Annihilation: $T(\bullet) = \bullet$, for $T \in \mathcal{T}$

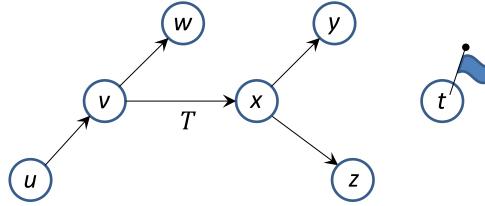
[Sobrinho, 2005]

Route-vector protocol - I

Separate computation per destination

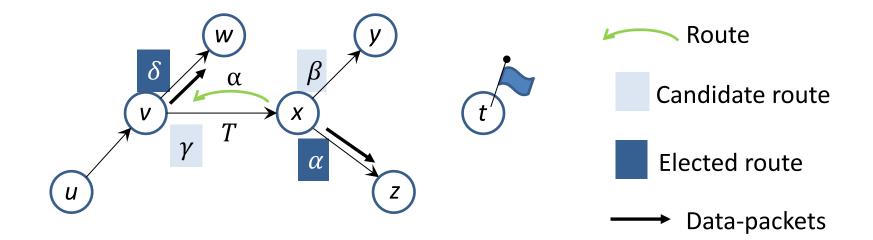
Only shown:

- Destination t
- Link *vx* with **extender** *T*
- Neighbors of *v* and of *x*



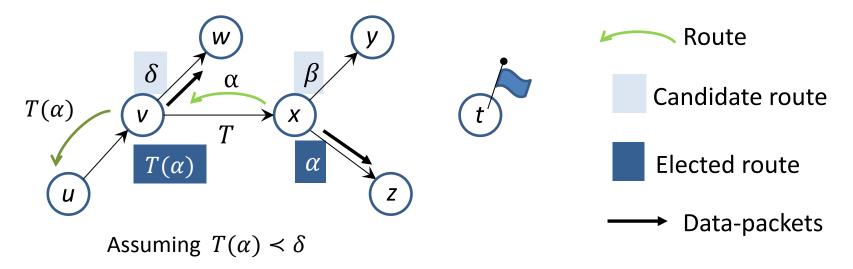
Route-vector protocol - II

- Routes associate an **attribute** to a destination
- Local state: candidate routes and elected route



Route-vector protocol - III

- Reception of a route
 - **extension** into a candidate route (\mathcal{T})
 - election of a route (□)
 - elected route sent to neighbors



• Extender T is isotone if it is an increasing map

$$\forall_{\alpha,\beta} \ \alpha \leq \beta \ \Rightarrow T(\alpha) \leq T(\beta)$$

– Extender is an endomorphism

$$\forall_{\alpha,\beta} \ T(\alpha \sqcap \beta) = T(\alpha) \sqcap T(\beta)$$

Routing algebra is isotone if all extenders are isotone

GR routing algebra: attributes and order

- Attributes
 - $-\{c,r,p,\bullet\}$
- Total order
 - $-c \prec r \prec p \prec \bullet$

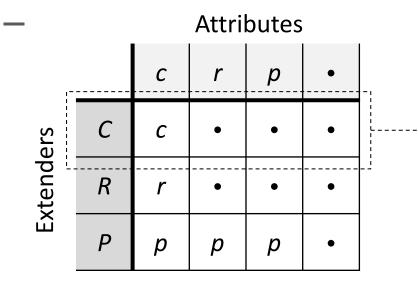
- *c* Customer route
- r Peer route
- p Provider route

Customer routes, then peer routes, then provider routes

GR routing algebra: extenders

Extenders

- closure of {C, R, P}

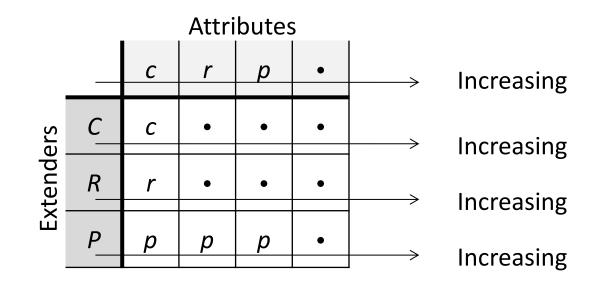


C – Customer link R – Peer link P – Provider link

C(c) = c – Customer route exported to provider becoming a customer route

 $C(r) = C(p) = \bullet - \text{Peer and}$ provider routes not exported to provider

GR routing algebra: isotonicity

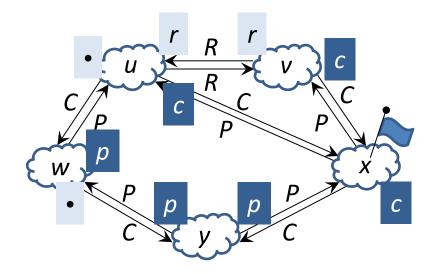


The Gao-Rexford routing algebra is isotone

GR network: stable state of BGP

• *u* and *v* are peers

- *v* is a provider of *x*
- *u* is a provider of *w* and *x w* and *x* are providers of *y*



- - *C* Customer link
 - *R* Peer link
 - *P* Provider link

Candidate route

A. Are unusable paths inherent to routing based exclusively on reachability information?

Modeling reachability: next-hop

• Extender *T* is next-hop if its image has a single attribute different from unreachability

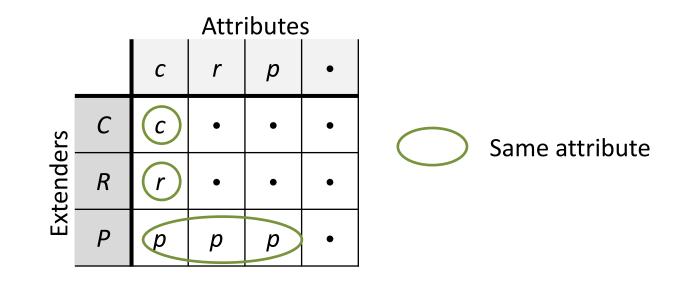
$$\forall_{\alpha,\beta} \quad T(\alpha) \prec \bullet \land \ T(\beta) \prec \bullet \ \Rightarrow \ T(\alpha) = T(\beta)$$

 Routing algebra is next-hop if all extenders are next-hop • Inter-domain routing

Autonomy and privacy

- Interconnection of routing instances
 - Circumvention of comparison of attributes from different routing instances

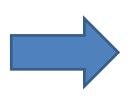
GR routing algebra: next-hop



The Gao-Rexford routing algebra is next-hop

Usability of paths

Next-hop routing algebra



Some paths are unusable, every network with cycles (at least three nodes)

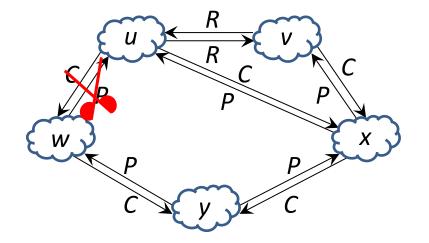
In order to avoid "bad behaviors," reachability information cannot be propagated all the way around a cycle

[Sobrinho, 2016]

Questions about usability

B. Can we quantify the usable connectivity of a network?

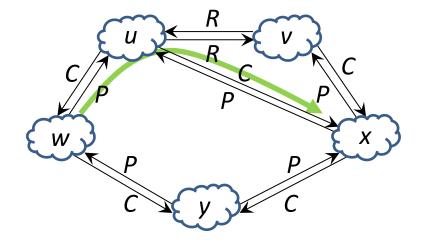
GR connectivity: usable separation



- C Customer link
- *R* Peer link
- P Provider link

One link **usably** separates *w* from *x*

GR connectivity: usable disjointness



C – Customer link R – Peer link P – Provider link

One link **usably** separates *w* from *x*

One usable link-disjoint path from *w* to *x*

Usable connectivity: duality and computation

Next-hop and isotone routing algebra

Minimum number of links that **usably** separates source from target Maximum number of

usable link-disjoint paths from source to target

Common quantity computable in polynomial-time

[Sobrinho and Quelhas, 2012]

• Given a usable path to a destination, will every node along the path be able to reach it?

GR with Backups (GRBack)

All exports are allowed except those from one provider to another

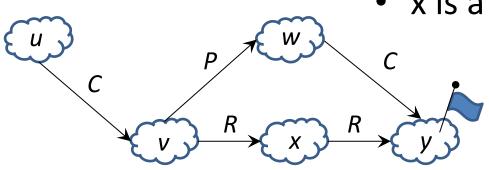
– Violation of GR export rules

- Backup routes are usable routes other than customer, peer, or provider routes
- Backup routes increase **avoidance level** for every violation of GR export rules

[Gao et al., 2001]

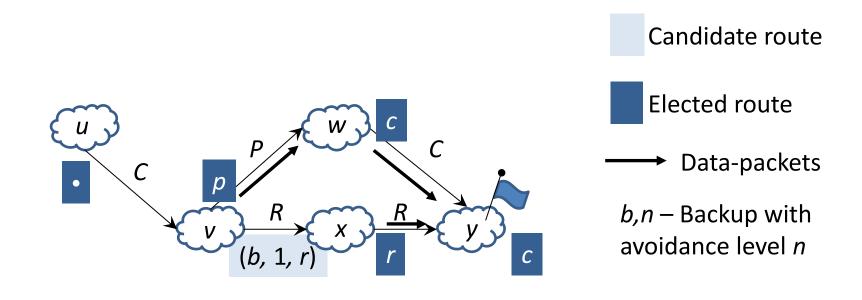
GRBack: visibility - I

- *u* and *w* are providers of *v*
- w is a provider of y
- x is a peer of v and y



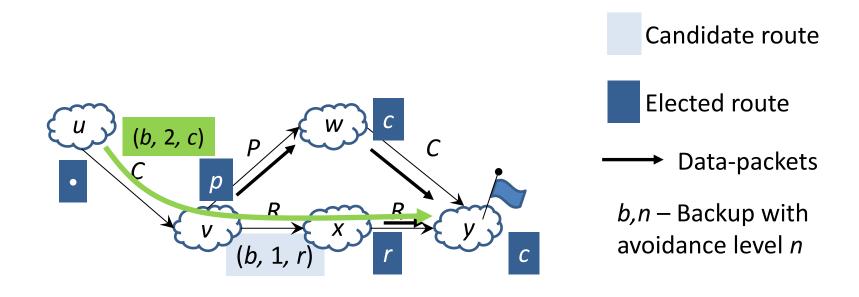
Links shown only in one direction

GRBack: visibility - II



u does not reach y

GRBack: visibility - III



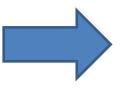
There is a usable path from *u* to *y*

u does not reach y

y is not visible from u!

Visibility of destinations

Isotone routing algebra



Visibility, every network, every destination

[Sobrinho and Quelhas, 2012]

Outline

5. Termination in loop-free states (BGP)

GR with Peer+s (GRPeer+)

- Routes learned from a peer+ (peer+ routes) preferred to customer routes
 - Violation of GR preference rules

GRPeer+ routing algebra: attributes; order

- Attributes
 - $-\{r^+, c, r, p, \bullet\}$

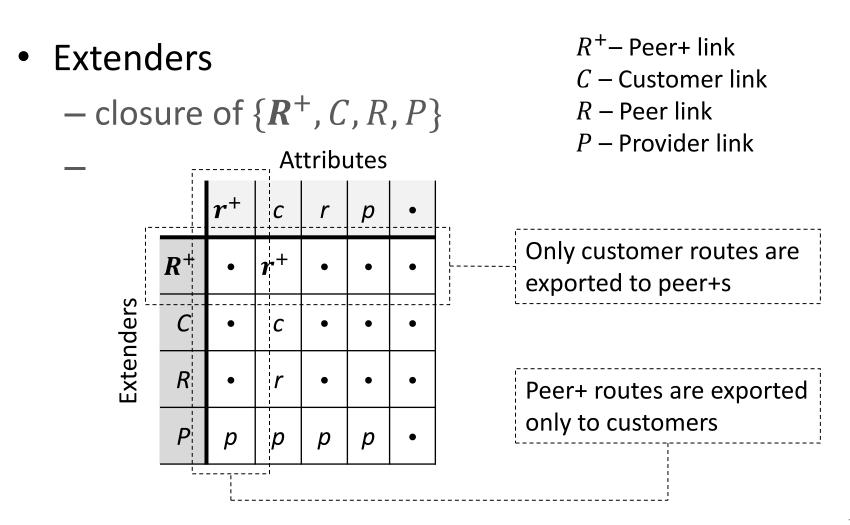
• Total order

$$-r^+ < c < r < p < \bullet$$

 r^+ – Peer+ route c – Customer route r – Peer route p – Provider route

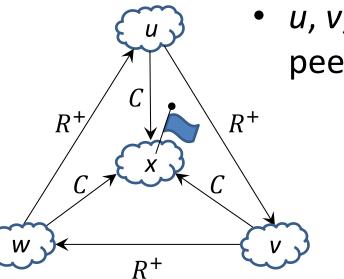
Peer+ routes, then customer routes, then peer routes, then provider routes

GRPeer+ routing algebra: extenders



GRPeer+ network

- *u*, *v*, and *w* are providers of *x*
- *u*, *v*, and *w* are mutual peers

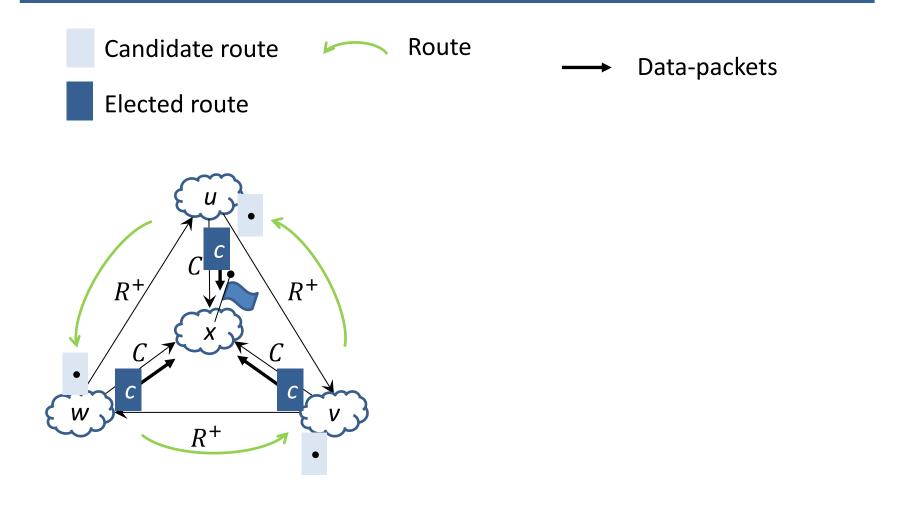


• *u*, *v*, and *w* prefer their clockwise peer (peer+) to *x*

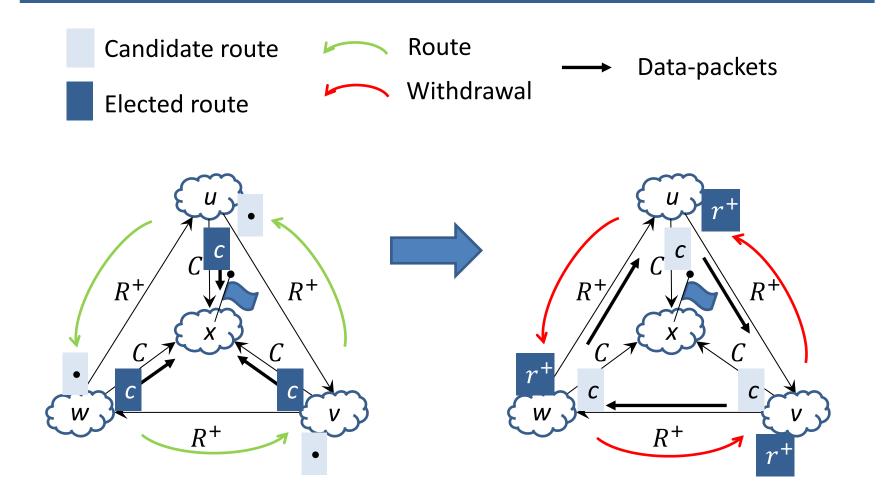
 R^+ – Peer+ link C – Customer link

Links shown only in one direction

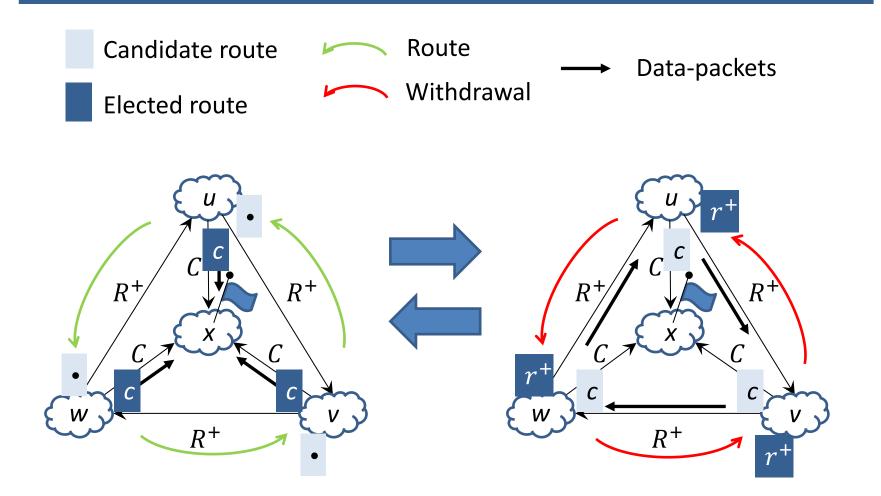
Non-termination - I



Non-termination - II



Non-termination - III



Correctness

- Termination
 - Stable state is reached, eventually

- No forwarding loops in stable state
 - Elected routes not learned around a cycle

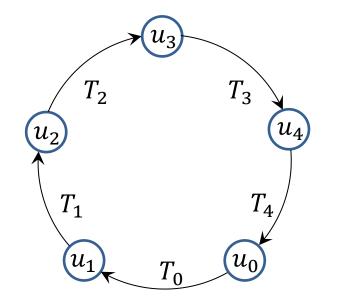
Question about correctness

 Can we characterize correctness in terms of routing configurations around the cycles of a network?

Strictly absorbent cycle - I

• Cycle $u_0 u_1 \cdots u_{n-1} u_0$, with T_i the extender of $u_i u_{i+1}$, is strictly absorbent if

$$\forall_{\alpha_0 \prec \bullet, \alpha_1 \prec \bullet, \dots, \alpha_{n-1} \prec \bullet} \ \exists_i \ \alpha_i \prec T_i(\alpha_{i+1})$$



Strictly absorbent cycle - II

• Cycle $u_0 u_1 \cdots u_{n-1} u_0$, with T_i the extender of $u_i u_{i+1}$, is strictly absorbent if

$$\forall_{\alpha_0 \prec \bullet, \alpha_1 \prec \bullet, \dots, \alpha_{n-1} \prec \bullet} \ \exists_i \ \alpha_i \prec T_i(\alpha_{i+1})$$

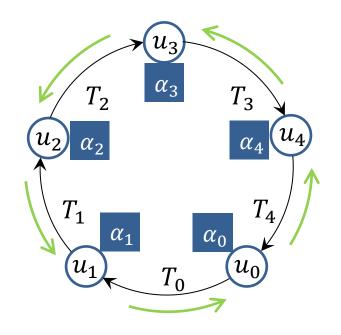
 $\begin{array}{c} \alpha_{0}, \alpha_{1}, \dots, \alpha_{n-1} \\ \text{external to the cycle} \end{array} \qquad \begin{array}{c} u_{2} \\ u_{2} \\ u_{1} \\ u_{1} \\ u_{1} \\ u_{0} \end{array} \qquad \begin{array}{c} u_{3} \\ T_{3} \\ \alpha_{4} \\ u_{4} \\ u_{$

Strictly absorbent cycle - III

• Cycle $u_0 u_1 \cdots u_{n-1} u_0$, with T_i the extender of $u_i u_{i+1}$, is strictly absorbent if

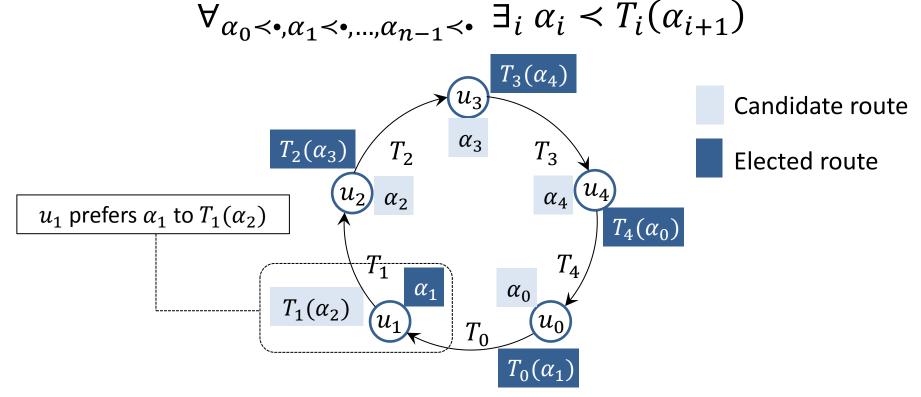
$$\forall_{\alpha_0 \prec \bullet, \alpha_1 \prec \bullet, \dots, \alpha_{n-1} \prec \bullet} \ \exists_i \ \alpha_i \prec T_i(\alpha_{i+1})$$

 $\alpha_0, \alpha_1, \dots, \alpha_{n-1}$ sent around the cycle



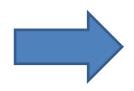
Strictly absorbent cycle - IV

• Cycle $u_0 u_1 \cdots u_{n-1} u_0$, with T_i the extender of $u_i u_{i+1}$, is strictly absorbent if



Correctness: forward implication

All cycles of the network strictly absorbent



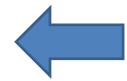
Robust correctness, every destination (anycast destinations included)

[Griffin et al.,2002]

[Sobrinho, 2005]

Correctness: backward implication

All cycles of the network strictly absorbent



Robust correctness, every destination (anycast destinations included)

[Sobrinho, 2016]

Strict absorbency: GR variants

- GR and GRBack
 - Cycle not formed exclusively by customer links
 - Cycle not formed exclusively by provider links
- GRPeer+
 - Cycle not formed exclusively by a mix of customer links and peer+ links
 - Cycle not formed exclusively by provider links

Outline

6. Survey of applications

Applications - I

- Sibling ASs
 - All routes are shared
 - Guidelines for correctness
- internal BGP (iBGP)
 - Route reflection
 - Guidelines for correctness and visibility
- Deployment of Secure BGP (S-BGP) [Lychev et al., 2013]
 - Security first, second, or last
 - Efficient computation of stable states
 - Analysis of collateral damages

[Liao et al., 2010] [Sobrinho, 2016]

[Griffin and Wilfong, 2002] [Vissichio et al., 2012]

Applications - II

- Interconnection of routing instances [Le and Sobrinho, 2014]
 - Current limitations
 - Better performance and reliability
- Link-state protocols
 - Separate computation of optimal paths over a common topology
- [Sobrinho, 2002] [Sobrinho and Griffin, 2010]

 Conditions for efficient computation, correctness, and optimality

- Distributed Route Aggregation on the Global Network (DRAGON)
 - Filtering and aggregation of prefixes while respecting routing policies
 - Filtering strategy: 49% savings in routing state
 - Filtering and aggregation strategies:
 79% savings in routing state

[Sobrinho et al. 2014, www.route-aggregation.net]

Outline

7. Conclusions

Conclusions - I

- Framework to reason about routing protocols
 - Unified view of route-vector protocol behavior
 - Conditions relating local decisions to global behaviors
- Unified view of route-vector protocol behavior
 - Algebra of attributes equipped with an election operation and extension maps

Conclusions - II

- Conditions relating local decisions to global behaviors
 - Strict-absorbency equivalent to robust correctness
 - Isotonicity implies optimality and visibility
 - Next-hop constrains usability
- Practical uses of the framework
 - Analysis of routing behaviors
 - Guidelines for the configuration of routing policies
 - Toward an automated management of routing

ありがとう