
Kamuee Zero: the Design and Implementation of
Route Table for High-Performance Software Router

Yasuhiro Oharaa, Yudai Yamagishib

NTT Communications Corporation

ayasuhiro.ohara@ntt.com
by.yamagishi@ntt.com

Abstract

We desire, in general, a flexible, controllable intelligent communication network infrastructure, that can robustly
support human activities in a large scale. Toward such SDN/NFV oriented network design, we start to seek for a good
software router design in this paper.

We introduce a software router implementation called “Kamuee”, which integrates DPDK, RCU, and Poptrie. In
this paper the design principle, the architecture, and the software implementation status are explained. We show
through the performance evaluation that 1) the performance figure of some hundreds giga bps is achievable by the use
of commodity hardware, 2) the packet loss problem still remains as the severe problem to overcome, 3) Poptrie can
handle very high-speed routing decisions for 40GbE wire-rate tra�c, actually in a real IP router system.

Kamuee implementation and its simple design principle are expected for various further applications. Examples
include the development of high-speed middleboxes such as firewalls, CGNs, load-balancers, or massive scale routers
handling quite a number of BGP and/or VPN.

Keywords: Software Router, NFV, DPDK

1. Introduction

Software Defined Network (SDN) and Network
Function Virtualization (NFV) [1] are the paradigm
shift for service providers and telecom companies,
where they can provide and maintain their services 1)
easily, 2) automatically, 3) swiftly, and 4) economi-
cally. Service providers and telecom companies are try-
ing to attain a very flexible, controllable, and yet intelli-
gent communication network, using software-based ap-
proach such as OpenFlow, OpenStack, and the virtual-
ization technologies.

The users of these services also receive the benefits.
For example, when Software Defined WAN (SD-WAN)
services are established, the consumers will be able to
set up a long haul private circuit in (say) thirty minutes.
Similar benefits can be taken from the notion of Service
Function Chaining (SFC) [2]. We could put a DDoS
mitigation device in our virtualized network immedi-
ately, in the midnight, with just clicking the appropri-
ate button with proper billing information. Previously
such DDoS in the midnight could not be immediately
dealt with, and setting up the new device in the network

may take hundreds of thousands of dollars, and plenty
of time such as weeks.

Toward the construction of such software-based flexi-
ble network, we tackle the challenge of high-speed soft-
ware IP router. The performance of the network is the
key: whatever the additional features are developed, the
network is useless when the performance is low. The
performance of software IP router, and further that of
the virtualized version, is the key to the success of future
network. Furthermore, if the high-speed packet process-
ing performance that is required by the software-based
IP router is achieved, then the technology that enables
it can also be applied to other important network func-
tions, such as firewalls and deep packet inspection (DPI)
devices, improving their performance as well.

Slow performance has been worried for the software
router for a long time of around twenty years. Recently
a few promising technologies seemed to have overcome
two important performance problems: the packet for-
warding problem and the routing lookup problem. Intel
DPDK [3] solves the problem of packet forwarding per-
formance. Recently Poptrie [4] is invented and expected

Preprint submitted to Internet Conference 2016 October 2, 2016

to open a new horizon for high-speed software router by
removing the IP routing lookup bottleneck.

In this paper we tackle the integration design of these
promising technologies. We target to provide a robust,
high-performance, reliable IP router software that can
even be used as the basis of developing other important
networking functions/middleboxes. Example of these
important networking functions include the firewall, the
Deep Packet Inspection (DPI), the Carrier Grade NAT
(CGN), and the load-balancer.

Rest of this paper is organized as follows. Section 2
describes the related work, Section 3 explains the de-
sign principle and the software architecture, Section 4
exhibits the evaluation, and Section 5 the Conclusion.
In the evaluation Section, provided are the performance
benchmark (throughput, latency, jitter) of a real DPDK
system, scaling of throughput by the use of multi-cores,
the peak performance of our implementation, compar-
isons between locking/synchronization methods, and
the performance of the overall integrated system.

2. Related Work

Several research on high-speed PC router has
been conducted in the past, including Click modular
router [5], and its recent variants as the platform for
middlebox-VMs, ClickOS [6].

RouteBricks [7], and PacketShader [8] both claimed
the usefulness of multi-queue, and both exhibited a
superior performance. RouteBricks integrate multi-
queues in Click, while the PacketShader added the
GPU-accelerated IP routing lookup to the use of multi-
queues.

Netmap [9] provides a programming framework that
can e�ciently share packet bu↵ers or queues without re-
dundant packet copy overhead. It essentially describes
the technology similar to DPDK, with the exception that
the Netmap provides a bit of memory/packet/process
protection additionally.

Poptrie [4] provides a very fast IP lookup data struc-
ture. With this technology, it is expected that we do not
need custom hardware devices, such as TCAM, GPU,
and FPGA, even for the purpose of very high perfor-
mance IP routing lookup.

We take the course of parallel processing to achieve
the desired superior performance. Thus, we need some
lock/synchronization framework. For the purpose, we
use Read-Copy Update (RCU) [10]. Brocade’s virtual
router seems to take the same approach [11].

A past work [12] took almost the same approach with
us. However, our paper di↵ers from them in several

NIC� NIC�

forwarder�

core� core� core� core�

forwarder� forwarder� forwarder�

core�

FIB� FIB�

RIB�
UI	Shell	

user-interface�
rib-	

manager�
arp-	

manager�
���	���
�����

core�

ARP	table�

RCU	
(qsbr)�

CPU	socket�

<�
>	busy	loop�

mulEqueues�

Figure 1: Internal structure

points: we provide the overall router software design
that supports other functionalities such as route change
and display of running information. Also we provide
more thorough evaluation including latency and jitter
performance, packet loss ratio, and the comparison of
RCU performance with other methods.

3. The Design of the Software Router “Kamuee”

Figure 1 depicts the internal structure of Kamuee.
With the hope of future development of rich function
versions, the current simple version is called Kamuee
Zero (also written as Kamuee0). It is a simple DPDK-
based application, with the design principle of the “des-
ignated thread” and the “internal messaging”. By desig-
nated thread we mean that the data is basically managed
by the single corresponding manager thread, avoiding
the need for locks. Thus if a thread wants to access a
data, it has to request the manager thread of the data,
by the internal messaging. For instance, the routing ta-
ble, which we call the Routing Information Base (RIB),
is mainly managed only by the “rib-manager” thread.
ARP manager thread (called “arp-manager”), and the
UI-shell thread (called “user-interface”) must request by
the internal message to the rib-manager about the RIB
contents. If the rib-manager changed the RIB contents,
it constructs the forwarding table, called the Forward-
ing Information Base (FIB), that is actually used by the
“forwarder” to forward packets. The FIB is published
through the RCU process, hence the FIB access scales
well with the number of reader process (i.e., the for-
warders), along with the consideration of FIB update.
We employed the Poptrie for the FIB data structure: the
FIB is small enough to be loaded in the L3 cache of

2

CPU (e.g., less than 10 MB), and is shared among the
CPU cores within the CPU.

Next-hop resolution during packet forwarding is
achieved by accessing the FIB in the forwarder thread.
The FIB is constructed based on the RIB and ARP ta-
ble by the rib-manager thread. On update of either RIB
or ARP table, the rib-manager thread constructs an up-
dated version of the FIB and publishes it to the for-
warder threads.

One way of implementing FIB publishing is by us-
ing traditional mutex locks. Mutex locks allows rib-
manager thread to stop the forwarder threads temporar-
ily to change the FIB table that is accessed from the old
FIB to the new FIB. Mutex lock can be a global mutex
to stop all the forwarder threads at once or it can be a
per-thread mutex to stop forwarder threads one by one.
However, using mutex lock to stop the forwarder thread
temporary would mean that the router would stop for-
warding packets temporary. This may cause packet loss,
additional latency and performance drops, and therefore
unacceptable in real world use cases.

In kamuee, to overcome the problem with mutex
locking, a lock-free data synchronization mechanism
called Read-Copy-Update (RCU) [13] is utilized. RCU
keeps multiple versions of the data object on updates.
When updating a data object, the old data object is
swapped with the new data object and keeps the old data
object intact. After all threads accessing the data object
completes the data critical section, thus stops referenc-
ing the old data object, the data object is released. This
mechanism enables the rib-manager thread to publish
the new FIB without stopping the forwarder threads.

When using RCU, the algorithm for determining
completion of the data critical sections have great ef-
fect to the packet forwarding performance of Kamuee.
In Kamuee, the forwarder threads enter and exit the data
critical section for each and every packet the forwarder
thread handles. Therefore the overhead for determining
the completion of the data critical section must be as
low as possible.

The liburcu library [10], an open-source user-space
RCU implementation, implements 3 algorithms for
achieving determination of data critical section comple-
tion: 1. General-Purpose (MB), 2. Signal-Based (SIG-
NAL), 3. Quiescent-State Based Reclamation (QSBR).
QSBR algorithm provides the lowest overhead to the
read-side threads compared to other algorithms [10]. As
having the lowest read-side overhead is critical to Ka-
muee’s packet forwarding performance, Kamuee em-
ploys Quiescent-State-Based Reclamation (QSBR) al-
gorithm to achieve determination of data critical section
completion.

Table 1: The hardware and software that consists Kamuee0.

Kind Product Name
M/B: Supermicro X10DAX
Chassis Supermicro SC836BA-R920B
CPU: Intel Xeon E5-2687WV3 ⇥2
Memory: DDR4-2133 16GB ⇥16 = 256GB
NIC: Intel XL710-QDA1 ⇥4
OS: Ubuntu 14.04.4
Data Plane: Intel DPDK 16.04
Lookup: Poptrie [4]

Table 2: Tra�c Generator & Analyzer

Kind Product Name
Tra�c Generator Chassis SPT-3U
Tra�c Generator Module MX-100G-F2
Tranceiver Adapter ACC-6069A

4. Evaluation

The evaluation is done by using the Spirent TestCen-
ter tra�c generator, connected directly to the Device
Under the Test (DUT) (i.e., our implementation). We
provide current hardware configuration of our imple-
mentation and the test configuration, in Section 4.1.

We evaluate our implementation in several perspec-
tives. First, in Section 4.3, we evaluate the basic for-
warding performance that is provided thanks to DPDK.
The basic forwarding performance benchmark exhibits
1) that our implementation does not impede the desir-
able high-performance of DPDK, and 2) a criterion for
how much performance we can get at maximum in our
test configuration, with some additional functions.

4.1. Test Configuration

Kamuee0 and the tra�c generator consist of the hard-
ware and software listed in Table 1 and 2, respec-
tively. The Kamuee0, as the DUT, is connected to/from
the tra�c generator/analyzer, Spirent, directly with the
four Direct Attach Copper (DAC, a.k.a., Twinax) cables
through the 40Gbps Ethernet. Specifically, four 40GbE
server adapters, XL710-QDA1, are installed in the Ka-
muee0, and each is connected via the 40GbE DAC ca-
ble. Hence the maximum amount of tra�c that can be
ingested to the Kamuee0 is 160Gbps in our test setup.

We generate test tra�c load from the Spirent gener-
ator, ingesting it into the Kamuee0, and have Kamuee0
classify based on the destination address of the IP packet
which port it should be emitted, and then the Spirent re-
ceives and counts the emitted packets.

The various test parameter settings are explained in
the next section, Section 4.2.

3

4.2. Labels
40G/80G/160G Amount of tra�c to support, and ca-

pacity of ports to be used; indicates the scale and
the targets of the implementation and the test. It in-
dicates, for example, how much tra�c is ingested
from the Spirent to the Kamuee0.

L3NONE/L3DEFAULTS/L3BGPFULL Routing ta-
ble functionality that is employed in the test.
L3NONE does not utilize the route table at all; the
route is decided by the forwarder only by some bits
in the IP destination address field (sometimes the
first two bits), and then decided the forwarding port
among the four interface ports.
L3DEFAULTS provide the route table that consists
of only four route entries that collectively covers
the whole IP address space. This is similar to the
default route (0.0.0.0/0) which covers the whole
space by just one route. The four default routes are
0.0.0.0/2, 64.0.0.0/2, 128.0.0.0/2, and 192.0.0.0/2.
The nexthop of each route is destined to each port
(port 1,2,3, and 4, respectively).
L3BGPFULL includes the route table setting that
incorporate a BGP full-routes routing table, from
the RouteViews project’s archive, at LINX (the
London IX) in the date of 2014-12-17, at peer
46th. The LINX route table includes 518,231
route entries. Additionally, L3BGPFULL includes
the four default routes that is described in the
L3DEFAULTS above. This is because if we lack
these routes the packet will be dropped when the
route was not found in the BGP full-routes table.
In order to distribute the tra�c among the four in-
terface ports, the above L3DEFAULTS routes are
incorporated additionally to the BGP full-routes ta-
ble, so that maximum performance can be mea-
sured including the route-not-found cases.

Q1-Q4/Q4m-Q6 The number of queues per port that
are used to forward tra�c. We used a CPU core per
each queue, so the number of queues is equivalent
to the number of CPU cores used. “Qn” means a
setup where n-queues are used per port to forward
tra�c. We use up to 4 queues per core, i.e., Q1-Q4,
in most cases, but in some specific cases we also
evaluate the case of 5 and 6 queues per core (Q5
and Q6). We could not allocate four core/queues
to each four interface port, because we were short
in the number of cores, given that only the 15 cores
are available for the use in DPDK, and 5 cores
are reserved for other functions such as OS, rib-
manager, and UI-shell. Hence the last 4th port is

assigned only 3 core/queues. This setting is indi-
cated by “Q4m”.

BACK/STRAIGHT/CROSS Indicates the path of the
test tra�c. BACK means the tra�c is returned
back to the received port. This situation is not
likely to happen in the routers in the real field.
STRAIGHT means the tra�c is forwarded in the
other NIC port of the same CPU. CROSS means
that the test tra�c is destined to the NIC port that
is connected to other CPUs.

WRONGNUMA The core from a di↵ernt CPU is in-
tentionally assigned to a NIC port. This means it
will incur redundant tra�c and distance otherwise
not needed. WRONGNUMA is used to check the
overhead of using the distance CPU cores.

Unless otherwise noted, the QSBR-mode RCU is em-
ployed for the synchronizing mechanism, throughout
the evaluations in this paper.

4.3. Single Core/Queue Forwarding Throughput

Figure 2 shows the performance benchmark using
only the single queue/core setting. Note that there is no
routing lookup involved in the process. This test should
be equivalent to the native DPDK performance test.

BACK/STRAIGHT/CROSS means the path of the
test tra�c: BACK means that the test tra�c is returned
back by the Kamuee0 router (the Device-Under-Test:
DUT) on the same interface port. This configuration is
just informational, because in the real network, putting
back the tra�c to the direction where it came is mean-
ingless, and almost will not happen. STRAIGHT means
that the tra�c is forwarded to the other interface port
within the same CPU (Note that the PCI-e slot is con-
nected below each CPU). On the other hand, if the tra�c
go across the CPUs, then we call it the CROSS tra�c,
and the rather increased latency or throughput limitation
is expected, because the tra�c is supposed to go through
the bus between the CPUs (e.g., QPI).

First, from Figure 2b we see that we cannot achieve
40GbE wire-rate performance if we use only a single
queue per port. Note that all settings in the Figure 2b
employ only a single queue/core per port. When the
size of the packet grow such as 1024 bytes, it is close
to the wire-rate, but it still does not fill the bandwidth
fully. This lack of fulfillment of performance require-
ments by a single busy-loop packet processing shows
the necessity for the multi-core parallel processing de-
sign. It supports our design principle of multi-core de-
sign for high-speed packet processing.

4

 0

 10

 20

 30

 40

 50

 60

 64 128 512 1024 1518

Ba
nd

wi
dt

h
(G

bp
s)

Packet Size (Bytes)

40G-BPS-LIMIT
40G-L3NONE-Q1-BACK

40G-L3NONE-Q1-STRAIGHT
40G-L3NONE-Q1-CROSS

40G-L3NONE-Q1-BACK-WRONGNUMA
40G-L3NONE-Q1-STRAIGHT-WRONGNUMA

40G-L3NONE-Q1-CROSS-WRONGNUMA

(a) Bits per Second

 0

 10

 20

 30

 40

 50

 60

 64 128 512 1024 1518

Fr
am

e
pe

r S
ec

on
d

(M
fp

s)

Packet Size (Bytes)

40G-FPS-LIMIT
40G-L3NONE-Q1-BACK

40G-L3NONE-Q1-STRAIGHT
40G-L3NONE-Q1-CROSS

40G-L3NONE-Q1-BACK-WRONGNUMA
40G-L3NONE-Q1-STRAIGHT-WRONGNUMA

40G-L3NONE-Q1-CROSS-WRONGNUMA

(b) Frames per Second

 6

 8

 10

 12

 14

 16

 18

 20

 64 128 512 1024 1518

Fr
am

e
pe

r S
ec

on
d

(M
fp

s)

Packet Size (Bytes)

40G-FPS-LIMIT
40G-L3NONE-Q1-BACK

40G-L3NONE-Q1-STRAIGHT
40G-L3NONE-Q1-CROSS

40G-L3NONE-Q1-BACK-WRONGNUMA
40G-L3NONE-Q1-STRAIGHT-WRONGNUMA

40G-L3NONE-Q1-CROSS-WRONGNUMA

(c) Frames per Second (Zoom of Fig-
ure 2b)

Figure 2: Single queue/core throughput

Secondly, the NUMA architecture and its configu-
ration impacted the performance, but not as much as
was expected (or afraid). Notice that even in the case
of WRONGNUMA configuration where the CPU core
is used from the opposite side of the CPU, the perfor-
mance degradation is marginal.

A little bit interesting phenomenon can be seen
in the result. The rare configuration of CROSS-
WRONGNUMA shows a rather better performance
compared to others, somewhat surprisingly. The
WRONGNUMA label means that the CPU core (and
hence the memory) was assigned from the opposite side
CPU socket, from the standpoint of the receiving in-
terface port. Also, the CROSS tra�c means that the
test tra�c is destined to the interface port below the
other (opposite side) CPU. Hence, in this case it means
that the packet reception is done by the distant CPU
core/memory from the NIC, and in the transmission part
the CPU core/memory is closer to the NIC on which the
packet will be transmitted. From the result, we can in-
terpret that it is better for us to assign to the packet a
CPU core that is close to the transmission NIC, rather
than reception NIC.

This is attributed to the DMA-read/write overhead.
In the packet reception process the NIC is writing to the
CPU’s memory (DMA-write), and in the packet trans-
mission process the NIC is reading from the CPU’s
memory (DMA-read). In general, DMA-read has larger
cost than DMA-write, because it incurs multiple steps
involving the reading of descriptor table.

This slightly better performance of CROSS-
WRONGNUMA can also be seen in the frame per
second (fps) performance (Figure 2c), and in the later
performance comparison of average latency and jitter.

From these results, we can say it has more impact
that the assigned CPU core(memory) is closer to the
transmitting NIC port, rather than to the receiving NIC
port. In other words, it has only a little meaning to care-

fully design the packet handling CPU cores assigned
closer to the receiving NIC port. Given that until the
completion of routing lookup we cannot know apriori
which NIC port the packet will be forwarded, we can-
not assign in advance the CPU core that is closer to the
transmission NIC port. A design choice of disregarding
the CPU/memory distance in NUMA architecture might
seem e↵ective.1 As a router’s design choice, sometimes
it may be desireable to assign the CPU cores even from
di↵erent (distant) CPU sockets, because the NUMA dis-
tance impact may be marginal, while the contribution of
additional CPU core is not.

4.4. Scaling Throughput
One of the prominent feature of Kamuee is the

flexible configuration of core/queue placement, which
enables easy scaling of performance using multiple
cores and queues. Figure 3 illustrates the scaling of
multi-core/queue to support unidirectional 80Gbps traf-
fic (unidirectional 40GbE x 2). We made a rather strong
assumption on the tra�c flow direction, and assigned al-
most all core/queue pairs to the receiving side interface
port (i.e., the router performance is not symmetric). It
shows that by using more than three cores/queue pairs
(labeled as Q3), Kamuee supports almost full 40GbE x
2 wire-rate tra�c in 128B packet size or larger. Wire-
rate tra�c of smaller-than-128B packet sizes are lim-
ited by the limitation of the Ethernet NIC hardware in
use. The fact that we can achieve the wire-rate with
only three core/queue pairs means the room for higher
performance, and it also enables us to conduct other ser-
vices in the high-performance packet forwarding pro-
cess, such as routing lookups and packet classifications.

Figure 4 shows the maximum input/output through-
put for our configuration: 40GbE x 4 = 160Gbps. We

1As WRONGNUMA label name suggests, the authors of this pa-
per did not think like that previously.

5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 64 128 512 1024 1518

Ba
nd

wi
dt

h
(G

bp
s)

Packet Size (Bytes)

80G-BPS-LIMIT
80G-L3NONE-Q1-STRAIGHT
80G-L3NONE-Q2-STRAIGHT
80G-L3NONE-Q3-STRAIGHT
80G-L3NONE-Q4-STRAIGHT
80G-L3NONE-Q5-STRAIGHT
80G-L3NONE-Q6-STRAIGHT

(a) Bits per Second

 0

 20

 40

 60

 80

 100

 120

 64 128 512 1024 1518

Fr
am

e
pe

r S
ec

on
d

(M
fp

s)

Packet Size (Bytes)

80G-FPS-LIMIT
80G-L3NONE-Q1-STRAIGHT
80G-L3NONE-Q2-STRAIGHT
80G-L3NONE-Q3-STRAIGHT
80G-L3NONE-Q4-STRAIGHT
80G-L3NONE-Q5-STRAIGHT
80G-L3NONE-Q6-STRAIGHT

(b) Frames per Second

Figure 3: 80Gbps Throughput

 0

 50

 100

 150

 200

 250

 64 128 512 1024 1518

Ba
nd

wi
dt

h
(G

bp
s)

Packet Size (Bytes)

160G-BPS-LIMIT
160G-L3NONE-Q1-STRAIGHT
160G-L3NONE-Q2-STRAIGHT
160G-L3NONE-Q3-STRAIGHT

160G-L3NONE-Q4m-STRAIGHT

(a) Bits per Second

 0

 50

 100

 150

 200

 250

 64 128 512 1024 1518

Fr
am

e
pe

r S
ec

on
d

(M
fp

s)

Packet Size (Bytes)

160G-FPS-LIMIT
160G-L3NONE-Q1-STRAIGHT
160G-L3NONE-Q2-STRAIGHT
160G-L3NONE-Q3-STRAIGHT

160G-L3NONE-Q4m-STRAIGHT

(b) Frames per Second

Figure 4: 160Gbps Throughput

could only use 15 cores for packet forwarding (other 5
cores are used by OS, rib-manager, arp-manager, UI-
shell, and master thread), so the port 3 only had 3 cores
while port 0 to 2 had 4 cores (hence the label Q4m). Our
router showed 160Gbps of forwarding capability on the
128B short packet tra�c. On this router, we will add
routing lookup feature later in this paper.

4.5. Latency and Jitter

Figure 5 shows the latency and jitter of ap-
proximately ten seconds duration. They employ
only a single queue/core, do not include routing
lookup, and are compared against the tra�c path
(BACK/STRAIGHT/CROSS), and NUMA distance.

We infer that, since the Maximum Read Request Size
register of the PCI Express was set to 128 bytes, the
latency was smallest when the Ethernet frame size is
128 bytes.

For the maximum latency and maximum jitter, the
result showed the clear distinction of WRONGNUMA
from others. All WRONGNUMA configuration did
have the maximum latency or jitter more than 1000us
(1ms). We suspect that this is attributed to the DMA
write process to a distant CPU core that involves a
largest time. Overall, latency and jitter are kept well
low, unless it is WRONGNUMA.

As stated in the previous section, CROSS-
WRONGNUMA exhibits a little bit interesting
behavior. CROSS-WRONGNUMA shows a rather
better performance in average latency and average jitter.
However, it incurs the large maximum latency and
jitter, just like the other WRONGNUMA configuration.

Figure 6 illustrates the relationship between the
latency, the jitter, and the number of queue per
port. Figure 5 uses only a single queue, and the
maximum latency/jitter were kept quite low (unless
WRONGNUMA). In contrast, the Figure 6 showed that

6

 0

 50

 100

 150

 200

 250

 64 128 512 1024 1518

Av
er

ag
e

La
te

nc
y

(u
s)

Packet Size (Bytes)

40G-L3NONE-Q1-BACK
40G-L3NONE-Q1-STRAIGHT

40G-L3NONE-Q1-CROSS
40G-L3NONE-Q1-BACK-WRONGNUMA

40G-L3NONE-Q1-STRAIGHT-WRONGNUMA
40G-L3NONE-Q1-CROSS-WRONGNUMA

(a) Average Latency

 0

 500

 1000

 1500

 2000

 64 128 512 1024 1518
M

ax
im

um
 L

at
en

cy
 (u

s)
Packet Size (Bytes)

40G-L3NONE-Q1-BACK
40G-L3NONE-Q1-STRAIGHT

40G-L3NONE-Q1-CROSS
40G-L3NONE-Q1-BACK-WRONGNUMA

40G-L3NONE-Q1-STRAIGHT-WRONGNUMA
40G-L3NONE-Q1-CROSS-WRONGNUMA

(b) Maximum Latency

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 64 128 512 1024 1518

Av
er

ag
e

Jit
te

r (
us

)

Packet Size (Bytes)

40G-L3NONE-Q1-BACK
40G-L3NONE-Q1-STRAIGHT

40G-L3NONE-Q1-CROSS
40G-L3NONE-Q1-BACK-WRONGNUMA

40G-L3NONE-Q1-STRAIGHT-WRONGNUMA
40G-L3NONE-Q1-CROSS-WRONGNUMA

(c) Average Jitter

 0

 500

 1000

 1500

 2000

 64 128 512 1024 1518

M
ax

im
um

 J
itt

er
 (u

s)

Packet Size (Bytes)

40G-L3NONE-Q1-BACK
40G-L3NONE-Q1-STRAIGHT

40G-L3NONE-Q1-CROSS
40G-L3NONE-Q1-BACK-WRONGNUMA

40G-L3NONE-Q1-STRAIGHT-WRONGNUMA
40G-L3NONE-Q1-CROSS-WRONGNUMA

(d) Maximum Jitter

Figure 5: 40G: Latency and Jitter

 0

 50

 100

 150

 200

 250

 64 128 512 1024 1518

Av
er

ag
e

La
te

nc
y

(u
s)

Packet Size (Bytes)

80G-L3NONE-Q1-STRAIGHT
80G-L3NONE-Q2-STRAIGHT
80G-L3NONE-Q3-STRAIGHT
80G-L3NONE-Q4-STRAIGHT
80G-L3NONE-Q5-STRAIGHT
80G-L3NONE-Q6-STRAIGHT

(a) Average Latency

 0

 500

 1000

 1500

 2000

 64 128 512 1024 1518

M
ax

im
um

 L
at

en
cy

 (u
s)

Packet Size (Bytes)

80G-L3NONE-Q1-STRAIGHT
80G-L3NONE-Q2-STRAIGHT
80G-L3NONE-Q3-STRAIGHT
80G-L3NONE-Q4-STRAIGHT
80G-L3NONE-Q5-STRAIGHT
80G-L3NONE-Q6-STRAIGHT

(b) Maximum Latency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 64 128 512 1024 1518

Av
er

ag
e

Jit
te

r (
us

)

Packet Size (Bytes)

80G-L3NONE-Q1-STRAIGHT
80G-L3NONE-Q2-STRAIGHT
80G-L3NONE-Q3-STRAIGHT
80G-L3NONE-Q4-STRAIGHT
80G-L3NONE-Q5-STRAIGHT
80G-L3NONE-Q6-STRAIGHT

(c) Average Jitter

 0

 500

 1000

 1500

 2000

 64 128 512 1024 1518

M
ax

im
um

 J
itt

er
 (u

s)

Packet Size (Bytes)

80G-L3NONE-Q1-STRAIGHT
80G-L3NONE-Q2-STRAIGHT
80G-L3NONE-Q3-STRAIGHT
80G-L3NONE-Q4-STRAIGHT
80G-L3NONE-Q5-STRAIGHT
80G-L3NONE-Q6-STRAIGHT

(d) Maximum Jitter

Figure 6: 80G: Latency and Jitter

almost always the maximum was larger than 1000us
(1ms). We suspect some kind of contention is occurring
in the PCIe process. From this result the increased num-
ber of core may deteriorate the maximum (worst-case)
latency and jitter.

4.6. Packet Loss
Packet loss by current Kamuee is quite large. Fig-

ure 7a and 7b shows the packet loss of Kamuee soft-
ware router for 1 queue on 40Gbps tra�c, and 1 to 6
queues on 80Gbps tra�c, respectively. Within the only
approximately 10 seconds of test, more than a million
packets (sometimes hundreds of millions packets) have
been lost in the single 40G test, as shown in Figure 7a.
Since the 1 queue cannot handle 40Gbps tra�c by itself,
the lack of performance result in the amount of packet
loss. The number of packet loss does not seem to be sig-
nificantly di↵erent for the tra�c path inside the router
(BACK/STRAIGHT/CROSS).

The packet loss derived from the shortage of packet
handling throughput can be removed by adding the mul-
tiple queue/core. From Q3 and larger number of queues
in Figure 7b, the number of lost packets decreased from
1 ⇥ 108 to 1 ⇥ 105. However, after the removal of
the shortage of packet handling throughput, the packet
loss does not improve further even when the queue/core
pairs are added. Specifically, increasing from Q4 to Q6
does not exhibit a significant improvement.

In order to show the relationship between the amount
of load and the number of packet loss, we conducted the

packet loss measurements with the ranging load from
20Mbps to 1Gbps by the steps of 20Mbps, for 60 sec-
onds duration each. Figure 7c shows the relationship,
and we can see that even in the very low load such as
less than 400Mbps, the packet loss occurs.

Figure 7d shows that the packet loss does not depend
on the packet size: the number of packet losses occurred
per 10 million packets does not seem to di↵er signif-
icantly between 64B and 128B tra�c, at least for the
range from 0 to 60 million packets.

4.7. RCU and Locks

Figure 8a and Figure 8b presents the throughput of
the Kamuee0 when di↵erent FIB synchronization meth-
ods are used. Tra�c of 80Gbps was generated by
Spirent to test the forwarding performance of the Ka-
muee0. The kamuee0 ingested the tra�c from 2 out of
4 ports and emitted the tra�c to the 2 ports not receiv-
ing tra�c. 4 forwarder threads were running per port
and therefore, actively accessing the FIB when handling
tra�c. The L3BGPFULL configuration of the FIB was
used during the measurement2.

RCU with QSBR algorithm provides the best band-
width throughput and frames per second throughput
when handling 64 byte packets. When handling 128

2The L3BGPFULL configuration used in this test did not include
the default routes mentioned previously. Instead, the packet was for-
warded randomly to either ports when route was not found.

7

 1

 100

 10000

 1x106

 1x108

 1x1010

 1x1012

 64 128 512 1024 1518

Nu
m

be
r o

f D
ro

pp
ed

 P
ac

ke
ts

Packet Size (Bytes)

40G-L3NONE-Q1-BACK
40G-L3NONE-Q1-STRAIGHT

40G-L3NONE-Q1-CROSS
40G-L3NONE-Q1-BACK-WRONGNUMA

40G-L3NONE-Q1-STRAIGHT-WRONGNUMA
40G-L3NONE-Q1-CROSS-WRONGNUMA

(a) 40G packet loss

 1

 100

 10000

 1x106

 1x108

 1x1010

 1x1012

 64 128 512 1024 1518
Nu

m
be

r o
f D

ro
pp

ed
 P

ac
ke

ts
Packet Size (Bytes)

80G-L3NONE-Q1-STRAIGHT
80G-L3NONE-Q2-STRAIGHT
80G-L3NONE-Q3-STRAIGHT
80G-L3NONE-Q4-STRAIGHT
80G-L3NONE-Q5-STRAIGHT
80G-L3NONE-Q6-STRAIGHT

(b) 80G packet loss

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200

N
um

be
r o

f D
ro

pp
ed

 P
ac

ke
ts

Traffic Load (Mbps)

64B
128B

1518B

(c) Packet Loss against Tra�c
Load

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120

N
um

be
r o

f D
ro

pp
ed

 P
ac

ke
ts

Number of Frames (Million)

64B
128B

1518B
0.5 * x

(d) Packet Loss against Number
of Frames

Figure 7: Packet Loss

 0

 20

 40

 60

 80

 100

 120

 140

 160

 64 128 512 1024 1518

Ba
nd

wi
dt

h
(G

bp
s)

Packet Size (Bytes)

RCU-QSBR
RCU-SIGNAL

RCU-MB
MUTEX-PERTHREAD

MUTEX-GLOBAL

(a) Bits per Second

 0

 10

 20

 30

 40

 50

 60

 70

 80

 64 128 512 1024 1518

Fr
am

e
pe

r S
ec

on
d

(M
fp

s)

Packet Size (Bytes)

RCU-QSBR
RCU-SIGNAL

RCU-MB
MUTEX-PERTHREAD

MUTEX-GLOBAL

(b) Frames per Second

 0

 200

 400

 600

 800

 1000

RCU-SIG
NAL

MUTEX-G
LO

BAL

MUTEX-PERTHREAD

RCU-Q
SBR

RCU-M
B

Up
da

te
 T

im
e

(m
se

c)

FIB Update Algorithm Type

(c) Time required to update and synchro-
nize FIB

Figure 8: Comparison of throughput with each data locking algorithm

byte packets, the performance of RCU with SIGNAL
algorithm and RCU with QSBR algorithm provides the
best performance. With packet sizes over 512 bytes, all
methods except for global mutex lock provides equal
performance. Overall, RCU with QSBR algorithm pro-
vides the best performance.

RCU requires memory barriers to achieve lock-free
data synchronization. The paper on user-space RCU im-
plementation [10] discusses the problems with memory
barriers and its impact to the performance. Basic con-
cept of RCU is that there is a global counter that keeps
the history of data change and each read-side threads
keep track of the referencing data version, which is a
snapshot of the global counter, locally. When updating
the a global reference counter, the reader threads must
execute a memory barrier in order to ensure that read-
side threads access the global counter after the counter
has been properly updated.

The di↵erence in 3 RCU algorithms is the strategy
on how to use the counter and when to execute mem-
ory barrier. MB algorithm is designed to be a general-
purpose RCU and provide flexibility. Therefore, with
MB algorithm, memory barrier is executed every time
a read-side thread go in to the data critical section.
With Kamuee0, the data critical section contains FIB

lookups which need to include a memory barrier, and
may cause the performance to drop. QSBR and SIG-
NAL algorithms minimizes the use of memory barri-
ers to provide higher read-side performance than the
MB algorithm. SIGNAL algorithm sends POSIX sig-
nals from the write-side thread when memory barriers
are needed. The read-side threads only execute memory
barriers when signal is received. With QSBR algorithm,
a read-side thread periodically makes a snapshot of the
current global counter and a memory barrier is only exe-
cuted at periodic snapshot. SIGNAL algorithm requires
forwarder threads to mark entries and exits of data criti-
cal section while QSBR algorithm only requires a peri-
odic snapshot of the global counter. Therefore, though
both QSBR and SIGNAL algorithm minimizes the use
of memory barriers, QSBR has slightly better read-side
performance.

Figure 8c presents the time required to synchronize
a new FIB between forwarders with di↵erent synchro-
nization methods. To observe the synchronization time
during the maximum load, 80Gbps of 64 byte packets
were used to put stress on the Kamuee0.

RCU with SIGNAL algorithm provided the fastest
synchronization time, followed by global mutex lock,
per-thread mutex lock, RCU with QSBR algorithm and

8

RCU with MB algorithm. Kamuee0 employs RCU with
QSBR algorithm, although it does not provide the best
update performance. RCU with QSBR algorithm was
employed as the packet forwarding performance is more
critical to the design of Kamuee0.

4.8. Overall Performance

Figure 9 illustrates overall peak performance of our
current best setup. Collectively the 160Gbps tra�c is
ingested from all the four interfaces. The throughput
is shown in Figure 9a. The di↵erence in throughput
between L3NONE and L3DEFAULTS shows the over-
head of this routing lookup framework; L3DEFAULTS
employs the routing lookup framework but the num-
ber of route table entries are just four. The di↵erence
between L3DEFAULTS and the L3BGPFULL are the
impact of the size of the route table. We see the both
overhead is significantly small. The L3BGPFULL (i.e.,
the Kamuee0 with BGP full-routes) exhibited 145Gbps
throughput in the routing of 128B short packet tra�c.

Note that in this evaluation method, we cannot dis-
tinguish the loss of tra�c due to the overhead of rout-
ing lookup, from the loss of tra�c caused just by the
skewed balance of tra�c between interface ports. BGP
full-route table is NOT completely balanced in the size
of the coverage by each routing table entry. Hence like
our setting if each route entry is equally assigned to each
port, then there will be some skewed balance in tra�c;
some ports get more tra�c, some less. Since the ports
that get more than 40Gbps will drop some packets, it is
possible that there are packet losses even if the perfor-
mance of the router is not a problem. The decreased
amount of forwarded tra�c of 145Gbps, against full
160Gbps, can also be attributed to this skewed balance
in the BGP full-route table.

The latency and jitter of the same setting are shown
in Figure 9b and 9c. Latency is increased due to the
increased size of the route table (i.e., comparison be-
tween L3DEFAULTS and L3BGPFULL). Jitters can be
as large as more than 1 millisecond.

Table 3 shows the packet loss count and ratio for the
duration of 60 seconds in this configuration. The packet
loss is significantly increased from L3DEFAULTS to
L3BGPFULL, both for 128B and 1518B sized packets.

5. Conclusion

We have shown the design and implementation of a
high-performance software router, called Kamuee0. Its
simple design enables the extensibility for performance
scale, and for additional features.

It exhibited as much as 145Gbps throughput in the
128B short-packets tra�c. The performance in latency,
jitter, and packet loss still have some rooms to improve.

Acknowledgements

We appreciate Toyo Corporation for they lent us a
hand and the device necessary to conduct our evalua-
tion. We would like to thank also to Masafumi Oe, Hi-
rochika Asai, and Takeshi Matsuya for their valuable
technical comments and advices.

References

[1] M. Chiosi, et al., Network Functions Virtualisation – An In-
troduction, Benefits, Enablers, Challenges & Call for Ac-
tion, https://portal.etsi.org/NFV/NFV_White_Paper.
pdf (2012).

[2] J. Halpern, C. Pignataro, Service Function Chaining (SFC) Ar-
chitecture, RFC 7665 (Informational) (Oct. 2015).
URL http://www.ietf.org/rfc/rfc7665.txt

[3] Intel, DPDK – Data Plane Development Kit, http://dpdk.
org/.

[4] H. Asai, Y. Ohara, Poptrie: A compressed trie with population
count for fast and scalable software ip routing table lookup, in:
Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM ’15, 2015.

[5] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. F. Kaashoek, The
click modular router, ACM Trans. Comput. Syst. 18 (3) (2000)
263–297.

[6] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bi-
fulco, F. Huici, Clickos and the art of network function virtual-
ization, in: 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), 2014.

[7] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Ian-
naccone, A. Knies, M. Manesh, S. Ratnasamy, Routebricks: Ex-
ploiting parallelism to scale software routers, in: Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP ’09, 2009.

[8] S. Han, K. Jang, K. Park, S. Moon, Packetshader: A gpu-
accelerated software router, in: Proceedings of the ACM SIG-
COMM 2010 Conference, SIGCOMM ’10, 2010.

[9] L. Rizzo, netmap: A novel framework for fast packet i/o, in:
2012 USENIX Annual Technical Conference (USENIX ATC
12), 2012.

[10] M. Desnoyers, P. E. McKenney, A. Stern, M. R. Dagenais,
J. Walpole, User-level implementations of read-copy update,
IEEE Transactions on Parallel and Distributed Systems 23
(2012) 375–382.

[11] S. Hemminger, Making a virtual router a reality with dpdk,
rcu and 0mq, https://events.linuxfoundation.org/

sites/events/files/slides/DPDK_RCU_0MQ.pdf.
[12] Y. Ohara, Y. Yamagishi, S. Sakai, A. D. Banik, S. Miyakawa,

Revealing the necessary conditions to achieve 80gbps high-
speed pc router, in: Proceedings of the Asian Internet Engineer-
ing Conference, AINTEC ’15, 2015.

[13] P. E. McKenney, J. D. Slingwine, Read-copy update: Using ex-
ecution history to solve concurrency problems, in: Parallel and
Distributed Computing and Systems, 1998, pp. 509–518.

9

 0

 50

 100

 150

 200

64B 128B 1518B

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

L3NONE
L3DEFAULTS

L3BGPFULL

(a) Throughput

 1

 10

 100

 1000

 10000

 100000

64B 128B 1518B

LA
TE

NC
Y

(u
s)

Packet Size (Bytes)

L3NONE
L3DEFAULTS

L3BGPFULL

(b) Latency

 0.1

 1

 10

 100

 1000

 10000

 100000

64B 128B 1518B

JI
TT

ER
 (u

s)

Packet Size (Bytes)

L3NONE
L3DEFAULTS

L3BGPFULL

(c) Jitter

Figure 9: Overall Performance

Table 3: Overall Packet Losses

64B 128B 1518B
#pkts #dropped (%) #pkts #dropped (%) #pkts #dropped (%)

L3NONE 17,888,594,284 7,216,753,509 (40.34%) 10,170,006,489 2,321,501 (0.02%) 987,932,796 252,610 (0.03%)
L3DEFAULTS 18,042,666,673 7,606,593,667 (42.16%) 10,159,437,842 215,961,305 (2.13%) 977,434,801 250,711 (0.03%)
L3BGPFULL 18,029,988,569 7,961,881,397 (44.16%) 10,157,535,139 918,556,928 (9.04%) 979,805,048 68,834,701 (7.03%)

10

