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Abstract— MapReduce/Hadoop is the de-facto default tech-
nology for processing BigData today. The processing itself is
distributed (scale-out). However, recent research shows that
processing throughput on singular multicore machines can easily
exceed that of the distributed design. This paper proposes a new
architecture that replays BigData on a single machine, processing
the replayed stream in realtime on multicore. In order to make
it work, objects in BigData are recorded with timestamps that
makes it possible to replay BigData along the timeline. The
ultimate goal of the architecture is a more statistically rigid
processing environment which uses data streaming algorithms to
produce sketches of targeted parts of BigData in realtime with
minimal memory footprint.

Index Terms— BigData replay, data streaming, statistical
sketches, parallel processing, multicore processing, streaming
algorithms, lockfree parallelization

1. INTRODUCTION

Hadoop (HDFS) [20] and MapReduce are de-facto stan-
dards in BigData processing today. Although they are two
separate technologies, they form a single package as far as
Big Data processing — not just storage — is concerned. This
paper will treat them as one package. Today, Hadoop and/or
MapReduce lack popular alternatives [6]. Hadoop (HDEFES)
solves the practical problem of not being able to store Big
Data on a single machine by distributing the storage over
multiple nodes [3]. MapReduce is a framework on which one
can run jobs that process the contents of the storage — also in a
distributed manner — and generate statistical summaries. This
paper will show that performance improvements are mostly
found in the MapReduce part of the technology [19].

There are several fundamental problems with MapReduce.
First, the map and reduce operators are restricted to key-value
hashes (datatype, not hash function), which restricts usability.
For example, MapReduce fails to accommodate the necessary
datatypes or procedures required by most data streaming
algorithms [8].

Secondly, MapReduce jobs create heterogeneous environ-
ments where jobs compete for the same resource with no
guarantee of fairness [19]. Such a guarantee is difficult to
achieve in distributed environments without incurring too
much overhead.

Finally, MapReduce jobs, or HDFS for that matter, lack time
awareness, while some algorithms might need to process in

its time sequence and/or applying a time window. Most data
streaming algorithms, for example, require that the incoming
data stream is processed along a timeline.

The core proposal of this paper is to replace the
HDFS/MapReduce pair with time-aware alternatives. Big Data
is replayed along the timeline and all the processing jobs
get time-ordered sequence of data items (objects, key-value
pairs, etc.). Because of the replay, it is now more practi-
cal to process data on one machine. Note that traditionally
HDFS/MapReduce sends jobs to remote nodes so that data
can be processed locally (by/at other nodes). This does not
cause a decrease in throughput because the processing itself
is designed as a lockfree multicore parallelization which is
shown to be extremely fast [2].

Having created a new framework, we can now use it for
executing a wide range of statistically rigid data streaming
algorithms [8]. Processing jobs run in parallel on multicore and
can enjoy the complete freedom of datatypes in which to store
sketches — statistical summaries of data. Note that traditional
MapReduce operates only with the key-value datatype.

Note that data streaming is one of many possible practical
applications of the proposed processing architecture. Data
streaming is selected as a practical example in this paper
simply because this particular application is currently at the
final stage of software implementation which is why it is easier
for this author to adopt the manual-like narrative that would
allow the reader to duplicate the design.

II. MAIN CONTRIBUTIONS OF THE PROPOSAL

The generic essence of the proposal is as follows. With
extremely high-volume replay — like that of BigData — one
needs to partition input and process it via multiple sub-streams
in parallel. There are two challenges here, both of which are
resolved by this proposal.

Firstly, it is necessary to develop a brand new parallelization
paradigm which would exploit the potential of a multicore
architecture to its fullest. In other words, parallel processing
on multicore should minimize overhead from synchronization
across concurrent jobs. This proposal achieves this goal via
a version of the lockfree design [2] which involves a special
shared memory design but also an algorithm that minimizes
cross-job (inter-process) communication overhead. The design
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also involves a data construct in which data units are naturally
listed in decreasing order of freshness (age) which allows for
export and removal of old data units without cross-job (inter-
process) synchronization.

Secondly, the process-while-replaying situation requires an
original design that allows concurrent jobs not only to get
access to the same stream of data, but also to process the
stream efficiently. Efficiency here is a complex metric con-
sisting of space efficiency, processing speed expressed as per-
unit overhead, and most importantly, minimization of jitter
across processing rates of concurrent jobs. The last metric is
extremely important in practice because the entire system is
forced to advance its timeline at the rate of its slowest job
regardless or how fast other jobs are. This aspect is referred to
as heterogeneous jobs. This paper proposes and implements an
optimization problem that incorporates these issues. Statistical
processing in each core is done using the data streaming
paradigm [9].

The specific contributions of this paper are as follows.
TABID (Time Aware Blg Data) is the name of the method and
its software implementation. This abbreviation throughout this
paper will refer to the proposal, its design and implementation.
While Hadoop works with files on a filesystem, this paper
proposes a timeline data store which is convenient for replay
and can work with any datatype (key-value store, object store,
etc.). The design of the data store itself is not key to this
proposal but it serves as a proof that the proposal is valid
and can be easily implemented in software. Since many jobs
run concurrently at the replay node, this paper proposes a
simple job packing heuristic which takes heterogeneity into
consideration. With the packing heuristic, the proposal is a
natively multicore technology according to the definition in
[2].

Analysis of the proposal shows that replay-based archi-
tecture allows for more efficient use of resources, while
MapReduce jobs have to read all files on all storage nodes. It is
also shown that optimal packing can help maximize efficiency
even for schedules with very many jobs running on commodity
hardware with 8 cores.

[II. TERMINOLOGY

Hadoop and HDFS (HaDoop File System) are used inter-
changeably. In fact, for simplicity, Hadoop in this paper means
Hadoop and MapReduce. Unit of action in Hadoop is a job.
Note that these terms are used solely to provide a practical
background to the proposal while the proposed method itself
can be applied to other technologies as well.

Streaming algorithm and data streaming also denote the
same technology. Here the unit of data is a skerch — a statistical
summary of a bulk of data. Sketches function as jobs in the
proposed method.

Data store is the same as data storage. Distributed parts of
stores are called shards in Hadoop or sub-stores in this paper.
Content itself is split in records, key-value pairs, objects,
etc., while this paper prefers items. Items in this proposal
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Figure 1: Architecture of a standard Hadoop/MapReduce sys-
tem.

are assigned in time, which is why the store is referred to
as timeline store.

The proposed method runs on multicore and needs shared
memory so that the manager can communicate with Skerches
running on cores. This paper employs a ring buffer to maintain
a finite time window of items in shared memory continuously.

When estimating performance of the proposed method,
heterogeneity is the main environmental parameter while
sketchbytes (volume of data processed by all Skerches), and
overhead (per data batch, per core) are the two quality metrics.

IV. OVERVIEW OF HADOOP

Fig.1 shows the Hadoop architecture both in design compo-
nents and key processes. Grey parts denote the system while
sharp-black ones are for user files and code. The rest of this
section will walk step-by-step through a standard MapReduce
job.

The Code for the job has to be prepared in advance.
Once ready, you can start the job by passing it to Hadoop
(MapReduce, actually) client. The client will then find the
shards scattered across the Hadoop cluster using Name Server
and deploy your job to each.

Manager at each shard will run your code locally. The code
can then read and parse files it finds locally, but more impor-
tantly perform the two key operations of MapReduce — map
and reduce, where both operators are normally implemented
by your code. The results are then sent back to the client
machine, which, having collected data from all shards, will
return the final result to the user.

Note that this is a simplistic view of the processes involved,
but contains enough information to understand the key differ-
ences in the proposal presented further in this paper.

Let us consider one example that has difficulty running
on Hadoop — the counting frequent items target popular in
data streaming [11], among many others [8]. To execute
it on Hadoop, we need to collect all items first using the
map operator. We can then count all items using the reduce
operator. However, at this point, we still need to keep all
items in memory and, in fact, the data has to be transmitted
over the network. Memory overflow is one potential problem
in this scenario. But, in a larger picture, such a solution
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violates the space efficiency objective commonly found in
streaming algorithms [9]. Space efficiency can be achieved
in data streaming mainly because items arrive in time order
which allows for a statistically sound selection process and
history management.

Another major problem with Hadoop is that it is incom-
patible with datatypes other than key-value hashes, where
data streaming requires much greater flexibility. For example,
Hadoop cannot work with trees and graph datatypes, many-
to-many [1] and one-to-many [13] patterns, and others.

V. RELATED WORK

Although Hadoop is unchallenged in practice today [6],
the technology is known to be inefficient in several respects.
Maximum achievable throughput for the HDFS system itself
is found to be around 50Mbps [3]. HDFS is also found to
be inefficient when content is split into a large number of
small files [7], where the default block size used by HDFS is
64Mbytes and above.

Recently much attention in literature is paid to performance
of Hadoop and its improvement. Statistics from a real com-
mercially operated cluster are presented in [S], while workload
modeling and synthesis are proposed in [4]. Performance im-
provement can be split into the following two groups. Parallel
processing on multicore is proposed in [19] and requires a
major re-write of the architecture. Research in [6] proposes
using more of local processing in RAM rather than distribution
processing over the network.

There is some literature on improvement of the HDFS
technology without the MapReduce component. Research in
[16] proposes creating a searchable version of HBase — a
simple non-searchable spreadsheet datatype on top of HDFS.
Another method in [15] creates an entirely new form of data
storage on top of HDFS, arguably an alternative to HBase.
Given that resources on substores are shared by all jobs
running in parallel, optimizing heterogeneous access to HDFS
is also a subject of interest [14].

Data streaming is a relatively new method but solves the
same problem as MapReduce — high-volume realtime Big Data
processing. Simply put, the main premise of data streaming is
the ability to compress large volumes of data into small statisti-
cal summaries called sketches. The article in [8] is an excellent
100+ page introduction to the topic. Practical algorithms in
literature are already applied to traffic analysis [9]. There is
research on space efficiency designs and optimizations [10].
Temporal features of data streaming and sliding windows are
considered in [12].

Well known practical data streaming targets are frequent
item discovery [11], aggregation of one-to-many records such
as found in quickly spreading viruses [13], and generic ag-
gregation of many-to-many records [1]. However, the toolkit
of data streaming is extremely flexible and can theoretically
accommodate any practical target.

Data streaming is the main reason for the new design in this
paper. Time awareness is implemented specifically with data
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Figure 2: Architecture of the proposed Hadoop alternative —
the TABID system.

streaming in mind. Coincidentally, the resulting architecture
can benefit from running on multicore hardware.

Multicore is a special case of parallel processing [17]. It has
already been applied to MapReduce in [19], which improves
its performance but does not solve all the other problems listed
above. Majority of existing multicore methods implement tra-
ditional scheduling-based parallelization [17] [18] [19], which
requires intensive message exchange across jobs. This paper
uses a special case of parallelization which features minimal
overhead due to a lock-free design. More details are presented
further in this paper.

VI. TABID: TIME-AWARE BIG DATA

Fig.2 presents architecture of the proposed TABID method.
For simplicity, the same basic layout as in the earlier chapter
on Hadoop is used. Also, mirroring the Hadoop piece above,
this section will walk through a standard TABID process. APIs
pertaining to some parts of the design are discussed in the next
section.

Before the process, let us consider differences in sharding.
Sharding is used in TABID as well, but the store is ordered
along the timeline. Note that such a design may not need a
Name Server because shards can be designed as chains with
one shard pointing to the next. This discussion is left to further
study and will be presented in future publications. Also note
that, as the API will show further on, data items are not key-
value pairs but are arbitrary strings, thus accommodating any
data type like encoded (Base64, for example) JSON[21].

The process starts with defining your Sketcher. The format
is JSON [21] and a fairly small size is expected. Unique
features of Sketchers are discussed at the end of this section.

When you start your Sketch, TABID Client will schedule it
with the TABID Manager. The schedule involves optimization
where Sketches are packed in cores in realtime, as will be
shown further in this paper. When a replay session starts, your
Sketch will run on one of the cores and will have access to
the timeline of items for processing. When the replay session
is over, results are returned back to the client in a JSON
datatype with arbitrary structure.

The following are the unique features/differences of TABID.
First, there is no code. Instead, Sketcher specifies which
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Figure 3: Big Data Timeline and sketches running in groups
on multiple cores.

standard streaming algorithm is used and provides values
for its configuration parameters. In case of a new streaming
algorithm it should be added to the library first and then
referred to via the Sketcher. Substore nodes in TABID are
dumb storage devices and do not run the code, although it
should not be difficult to create a version of TABID which
would migrate to shards to replay data locally. Such a version
with its performance evaluation will be studied in future
publications.

VII. TABID: STREAMING ON MULTICORE

A method which packs n Sketches into m cores is a well-
known bin packing problem. The method presented in this
section performs one (blind) initial packing but then re-packs
every time there is a change in state. Given that each Sketch
has start and end times which can differ from those of the
replayed Big Data, changes in state can be frequent. Given
that all Sketches on all cores share the same time-ordered
stream of items, the main objective of the heuristic is to
minimize variance across processing cursors (current position
in stream) across Sketches. Intuitively, if all Sketches with
heavy-duty processing are packed into one core and all light-
duty ones are packed into another, the replay will move at
a greatly diminished speed. The proposed heuristic aspires to
avoid such situations, while the design itself facilitates parallel
processing without cores passing messages or competing for
memory locks.

Fig.3 shows the design of the TABID Manager Node. The
manager is running on one core and is in charge of starting and
ending sketches as per its current schedule. Note that this point
alone represents a much higher flexibility compared to MapRe-
duce which has no scheduling component. Read/write access
to the time-ordered stream, although remaining asynchronous,
is collision-free by ensuring that writing and reading cursors
never point to the same position in the stream. Sketchers read
the data at the now cursor while the Manager is writing to a
position further along the stream, thus creating a collision-safe
buffer.

Fig.4 shows a simple shared memory design which is used
by the Manager and all Sketches on all cores (reference C/C++
code in [22]). The figure also presents the logic for the two
kinds of processes.
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Figure 4: Shared memory design and logic followed by each
Sketch (left) and TABID Manager (right).

The Manager (right side) logic is as follows. Since it is
helpful to avoid per-item signaling (via shared memory), data
is read in batches within the physical limits of the ring buffer
which in turn depends on the size of the shared memory.
When a new batch has been read into the ring buffer, the
global now cursor is updated, which allows for all Sketches
to start processing new items. The Manager also monitors all
Sketch times — cursors for individual Sketchers, and can change
packing configuration based on collected statistics.

Each Sketcher (left side) follows the following logic. It waits
for the now cursor to advance beyond its own cursor, which is
stored independently for each Sketch in the shared memory.
When it detects change, the Sketch processes all newly arrived
items. Once its cursor reaches the global now, the Sketch
returns to the idle state and starts polling for new change at a
given time interval.

Note that ring buffer is accessed via a C/C++ library call
[22] rather than directly by each party. This is a useful
convention because it removes the need for each accessing
party to maintain its current position in the ring buffer. The
buffer only appears to be continuous while in reality it has
finite size and has to wrap back to the head when its tail is
reached.

VIII. TABID: APIs

Although far from an exhaustive list, the APIs in this section
can fully describe TABID functionality. All APIs are executed
over HTTP, even if they occur within the same physical
machine.

To append a data item to the timeline store, one can send
POST tabidStorePut( timestamp, ’string’),
where string is completely freetype. It is common practice to
send Base64-encoded JSON in this manner.

To schedule a Sketch, one sends the Sketcher JSON as
POST tabidSketchAdd( startTime, JSON),
which returns the /D of the newly created and scheduled
Sketch. Its current status can be verified using
GET tabidSketchStatus( ID),
which returns status JSON.
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IX. ANALYSIS: SETUP AND METRICS

This section discusses parameters and metrics used for
analysis. First, let us define the concept of a configuration
tuple:

<vmin s Umaz a) 9

which specifies a distribution of values between v,,;, and
Umae configured by a. The tuple can be used to define
heterogeneity:

—1
MOy e (exp_“’”) Vx € (1...100),a > 0,
a=0,

Umazx
where a is the exponent and norm is the operator that nor-
malizes the distribution of values and maps it onto the range
between v,,in and v,,axr. Note that the case of ¢« = 0 is a
special homogenous case. In analysis, values for a are specifi-
cally 0,0.7,0.3,0.1,0.05,0.01, where a = 0 is a homogenous
distribution (horizontal line), a between 0.7 and 0.3 creates
distributions with majority of large values, ¢ = 0.1 is almost a
linear trend and a between 0.05 and 0.01 outputs distributions
where most values are small. The last two cases are commonly
found in natural systems and can therefore be referred to as
realistic.

Distributions apply to Sketch lifespan and per-unit overhead
— the two practical metrics describing the performance of a
TABID system.

The specific tuples used for overhead are (100, 10000, 0),
(100, 10000, 0.7), (100, 10000, 0.3), (100, 10000, 0.1),
(100,10000,0.05), and (100,10000,0.01), where unit
of measure is microsecond. The specific lifespan tuples
are  (100,2500,0), (100,2500,0.7), (100, 2500,0.3),
(100, 2500, 0.1), (100, 2500, 0.05), and
(100,2500,0.01), where unit of measure is minutes. It
is therefore assumed that the example Big Data used for
analysis is 2500m long (in perfectly realtime replay). With
the commonly found practical throughput of about 1Gbyte
per minute, the Big Data in question is 2500Gbytes in size
[3]. There can be between 10 and 1000 parallel Sketches and
8 cores (assuming commodity 8-core hardware).

The packing heuristic is defined as follows. C' denotes a
set of item counts for all sketches in all cores, one value per
Sketch. M is a set of per-core item counts, one value per core.
Optimization objective is then (var and max are operators):

minimize var(C)+ max(M).

For simplicity, values for C' and M are normalized within a
time window to avoid dealing with different units of measure
in the two terms. In analysis, the problem is solved using
Genetic Algorithm, for which the above objective serves as a
Jitness function. Detailed description of GA is omitted due to
limited space.
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X. ANALYSIS: RESULTS

This section presents results in two settings: performance in
terms of sketchbytes versus overhead. The former is evaluated
by the ratio of skerchbytes between traditional Hadoop jobs
and the proposed TABID Sketches. The latter is a worst-case
analysis only for TABID, which shows what item throughput
can be expected given heterogeneity and number of sketches.

Fig.5 shows sketchbytes performance expressed as Hadoop /
TABID ratio. In cases when heterogeneity a > 0.1, the ratio is
around 1000. For smaller (more realistic) a, the ratio does not
saturate but grows continuously up to 5-6 orders of magnitude
(log scale). Note that this gap in sketchbytes is solely due to
heterogeneity of Sketch lifespans. If to account for the fact
that in TABID the stream is read/replayed only once, the gap
widens further.

Fig.6 shows performance of the above packing heuristic.
For @ > 0.1 it is difficult to constrain continuous increase
in maximum overhead (per core, not per Sketch). However,
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for the realistic cases of a = 0.05 or even better for a = 0.01
there is a near-saturation trend, which means that performance
is about the same for few Sketches as well as for very many
Sketches. The worst case is about 5.4ms (see configuration
above) per item (10ms is the configured max), which means
that the slowest core can still process roughly 200 items per
second per sketch. Note that the total throughput of the system
is much greatly because of multiple Sketches and multiple
cores.

XI. CONCLUSION

This paper proposed a fundamentally different approach to
processing Big Data. The Big Data is replayed in a multicore
environment on a single machine while many heterogeneous
(processing) jobs run concurrently on separate cores, having
access to the same data stream and producing statistical
sketches on the output. The core of the proposal is a parallel
processing design which almost entirely eliminates overhead
from inter-process communication and specifically locking.

The proposed design is an alternative for the both parts of
the HDFS/MapReduce technology. The HDFS part is replaced
with a time-aware storage where each item is coupled with a
timestamp. MapReduce is replaced with a time-aware replay
on top of which multiple jobs can run multiple streaming
algorithms in parallel. The new design is necessary to ac-
commodate streaming algorithms whose complex and non-
standard datatypes make it impossible to implement them as
MapReduce jobs.

The proposed TABID design is fundamentally different
from HDFS/MapReduce. In MapReduce, jobs are dispatched
to remote machines to collect and bring back summaries.
TABID replays data over the network as a single stream,
from which each job (Sketch in TABID terminology) reads
and processes items. Since all the Sketches in TABID run on
the same machine, the next logical upgrade is to implement
the system as a parallel process. In this paper, TABID runs on
multicore.

In order to facilitate an efficient multicore parallelization,
TABID incorporates an optimization problem which, using a
simple heuristic, maps n Sketches into m cores in such a
way as to minimize variance in processing positions (cursors)
across Sketches. This implies that changes in state (entry and
exit of Sketches, etc.) can cause a re-packing in order to
improve efficiency of the system in its new state.

Analysis of TABID’s performance showed that it is much
more efficient than HDFS/MapReduce in terms of the volume
of digested information as long as Sketches are heterogeneous
in lifespan. Note that MapReduce jobs are also heterogeneous
but MapReduce does not optimize resource use via scheduling.
TABID was also found to be stable and independent of the
number of Sketches, as long as majority of them would incur
negligibly small overhead. Note that such a scenario is close
to reality [S].

Some of the features of the proposal are left out of the
paper due to size limitations. For example, time-aware storage
makes it easy to discard oldest items. This is hard to do in
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HDFS because it has no time dimension. Instead, users have
to timestamp files and remove old data manually, triggering
large changes in HDFS. This and other additional features of
the proposal will be considered in future publications.
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