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ABSTRACT

Network testbeds based on virtualization technology have
been used in network research. Network measurement is
affected by shared and virtualized resources on a node.
Oversize packet spacings, which are caused by CPU
scheduling latency, can be a major cause of throughput in-
stability and imprecise network measurement on a virtual-
ized network testbed. The packet spacing which is larger
than the TCP transmission period involves packet trans-
missions, which results in severe throughput. We call this
situation an ‘anomaly’. Although CPU availability is an
important criterion to estimate the anomalies, idle CPUs
are consumed by measuring the CPU availability. We ob-
serve resource state during throughput measurement, and
apply principal component analysis (PCA) to a seven di-
mensional matrix of the resource state to obtain criteria,
instead of the CPU availability. We show that the top two
principal components account for 95% of the original data
set, and are sufficiently enough to describe the original re-
source state. Component loadings and a scatter plot of the
first and second component scores provide us with a sim-
ple view of the resource state for the anomaly estimation.
The first component can be presented as workloads, and the
second one as the difference in the resource state. The first
and second principal component enable the anomalies to be
estimated.

KEY WORDS
Network measurement, Virtualization, PlanetLab, Princi-
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1 Introduction

Since virtualization technologies have progressed, network
testbeds, such as Emulab [1], StarBED [2], and PlanetLab
[3][4], using these technologies are used in many fields of
network study. PlanetLab, which is a virtualized network
testbed over the Internet, has been used to investigate the
validity of measurement tools [5] and prediction methods
[6]. As of August 2010, it has grown to 1,000 machines
spanning more than 500 sites and 40 countries. In it, a
node based on the Linux-VServer shares resources, such as
central processing unit (CPU), memory, and I/O interfaces.
A platform called a ‘sliver’ is provided as a virtualized en-
vironment to users and multiple slivers can be run simulta-
neously at each node. A set of these slivers participating in
the same activity at different nodes is called a ‘slice’. We
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call a slice that used at least 0.1% of the CPU in the last five
minutes as a ‘live slice’, and contains a process as a ‘active
slice’.

Because the resources are shared by many users and
managed by resource brokers, this impact can be affected
to the other users on the node. Moreover, it has affected
network measurement [7][8][9] and throughput instability
[10]. In particular, oversize packet spacings, which are
caused by CPU scheduling latency, can be a major cause of
throughput instability and imprecise network measurement
on the virtualized network testbeds. The packet spacing
which is larger than the TCP transmission period involves
packet transmissions, which results in severe throughput.
We call this situation an ‘anomaly’. Although CPU avail-
ability is an important criterion to estimate the anomalies,
idle CPUs are consumed by measuring the CPU availabil-
ity.

The aim of our study is to obtain criteria, instead of
the CPU availability, for the anomaly estimation. The goal
is required to establish a throughput prediction method for
network environment based on virtualization technology.
To achieve the goal, we are using PlanetLab as a virtu-
alized network testbed. We measure network throughput
with resource state to observe the anomalies on the virtu-
alized testbed. Next, we investigate the anomalies using
packet-level analysis, and aggregate the resource state at
anomalies and no anomalies into a dataset. Finally, we ap-
ply principal component analysis (PCA) to a matrix of the
resource state to obtain criteria.

In this paper, we present the analysis of resource state
using PCA for the anomaly estimation. The main contribu-
tions of this work are:

The top two principal components account for 95%
of the original data set, and are sufficiently enough to
describe the original resource state.

Component loadings and a scatter plot of the first and
second component scores provide us with a simple
view of the resource state for the anomaly estimation.
The first component can be presented as workloads,
and the second one as the difference in the resource
state at anomalies and no anomalies.

Instead of the CPU availability, the first and second
component enable the anomalies to be estimated. In
the second component, live and active slice count are
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larger than total CPU usage, and an anomaly estimator
can be designed without total CPU usage.

The rest of this paper is organized as follows. Firstly,
we describe related work in Section 2. Secondly, analy-
sis methodology is explained in Section 3. Next, we dis-
cuss analysis results using PCA in Section 4. Finally, we
conclude the paper with a summary of the main points in
Section 5.

2 Related work
2.1 Fluctuation in packet spacing

Peterson et al. [7] deployed a packet forwarding overlay
between Seattle and Washington, D.C on the virtualized
testbed and used ping packets to compare round trip time
(RTT) between the Seattle and D.C. nodes for the network
and overlay. The RTT of network was constant while that
of the overlay varied widely. The cause of the fluctuation in
RTT was CPU scheduling latency. Although the schedul-
ing latency at a node will be a serious problem for network
applications, no consideration has been given to the rela-
tionship between packet spacing fluctuation and scheduling
latency.

Spring et al. [8] showed that the load prevents ac-
curate latency measurement and precise spacing for packet
trains. They ran traceroute and tcpdump in parallel to ac-
quire timestamps between the application and kernel levels
and showed the differences between application and kernel-
captured timestamps when sending probes and receiving
responses. Moreover, they transmitted packet trains to de-
termine how the CPU load impaired precisely-spaced pack-
ets. However, they showed no clear conditions for the type
of load.

Lee et al. [10] investigated that the anomalies on the
virtualized network testbed, and found CPU consumption
on per-slice basis is an important parameter for the anomaly
estimation. However, this approach consumed idle CPUs
to measure the CPU availability. If there are users to use
CPUs on the node, the monitoring program will be an ob-
stacle to allocate CPUs to the users.

Wang et al. [9] found that the networking perfor-
mance between Amazon EC2 instances demonstrated very
different characteristics, such as abnormal large delay vari-
ations and unstable TCP/UDP throughput, caused by end
host virtualization. Thus, the anomalies occurred on the
network environment based on virtualization technology.

2.2 Monitoring systems for the virtualized testbed

CoMon [11][12] is a centralized resource monitoring sys-
tem for the virtualized testbed. It provides views of the vir-
tualized testbed, such as node-centric and slice-centric in-
formation. Moreover, it has been used for selecting nodes
and identifying problems on the virtualized testbed. Be-
cause it gathers data every five minutes, the data granular-
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ity is limited and the data type makes it hard to estimate
fluctuation in packet spacing.

Clue [13] is an anomaly detection system for the vir-
tualized testbed. However, this system focused on detect-
ing anomalous behavior for the virtualized testbed and it
used data on CoMon only.

Slicestat [14] provides slice-level resource consump-
tion information at each node on the virtualized testbed. It
does not provide node-level information, such as SSH fail-
ing and shutdown. In these monitoring systems, however,
the authors did not discuss any unstable conditions occur-
ring in their network experiments.

3 Analysis methodology
3.1 Throughput measurement with resource state

We empirically select four node pairs (eight nodes), which
we refer to as nodes « and (3, v and J, k and A, and  and
v. These nodes are located at different sites across North
America and Europe, and composed of two or four inde-
pendent CPU cores and physical memory of approximately
3 GB (gigabytes). We measure RTT using Internet Con-
trol Message Protocol (ICMP); their basic characteristics
are given in TABLE 1.

A prediction method has been previously proposed
using a pair of different-sized connections. This method,
which we call ‘connection pair’, uses a small sized probe
transfer to predict the throughput of a large sized data trans-
fer. Wolski et al. [15][16] used different-sized pairs of con-
nections and empirically established the basic probe size
as 64 KB (kilobytes) for Network Weather Service (NWS).
However, no consideration was given to the network en-
vironment based on virtualization technology. We gener-
ate the various sizes of the connection pair to observe the
anomalies and to establish a throughput prediction method
in the virtualized network. Moreover, we observe resource
state per slice on the node using slicestat during through-
put measurement. Measurement methodology is described
in Figure 1. The size of the connection pair is shown in
Table 2.

Determine results
of experiment

\_‘

~- - Receiver node

Generate multiple
connection pairs
simultaneously

Internet
Cloud

= Probe transfer
[ Data transfer

Sender node

Monitoring resource state ———"1 Connection pair
using slicestat

Figure 1. Connection pair measurement method with re-
source monitoring.
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Table 1. Node characteristics on virtualized testbed.

Node CPU speed CPU | Memory Node pair Mean RTT
name [Ghz] cores [GB] (receiver, sender) [ms]
« Xeon 2.66 2 2.96
3 Xeon 2.4 7 346 node «, node 42.8
¥ Core2Quad 2.66 4 342
5 | Core2Quad2.66 | 4 321 node 7y, node & 83
K Core2Quad 2.66 4 3.42
) PentumD 3.2 | 2 347 | noder node 20
0 CoreDuo 2.33 2 3.45
v Xeon 3.4 2 2.97 node 11, node v 20
10 ‘B +
Table 2. Probe and data size combinations for connection z i ¢
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Although the measurement granularity of resource state % R
was 1 minute, the slices on the node, where the resource ,‘Z 0ot b éﬁnﬁ_ )
state was busy, were frequently scheduled off the CPUs, g ol so
and the granularity was unstable. We gathered throughput 2 ' o
measurement results through the connection pairs and ap- g e R
proximately 8,000 resource state results at all the pairs for é 1o-05} o
48 hours. In packet-level analysis, there were no significant - ‘ ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000 1200 1400

changes in the RTT and packet loss rate of connection pair.
We depict the mean values of these network metrics in Ta-
ble 3. We found the anomalies at the sender nodes A and v.
These were a major cause of throughput instability. Mean
packet spacing and throughput of connection pair at all the
sender nodes are shown in Figure 2. Moreover, the anoma-
lies occurred both probe and data transfer. Mean packet
spacing for connection pair at all the sender nodes is shown
in Figure 3. A dataset consists of the resource state at all
the sender nodes, thus we aggregate the resource state at
anomalies and no anomalies into the dataset.

Table 3. Mean rtt and packet loss rate of connection pair.

Node pair | RTT [ms] | Loss rate [%]
a-f 48.5 0.069
v-6 60.2 0.478
K-A 22.1 0.002
w-v 97.5 0.007
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Figure 2. Mean packet spacing and throughput of connec-
tion pair at all sender nodes.
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Figure 3. Mean packet spacing for connection pair at all
sender nodes.
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Table 4. Mean usage of the resource state with anomalies at all sender nodes

Sender node || Anomalies | CpuR [%] | MemR [%] | Proc | CurProc | LiveC | ActiveC | TotalC
1) X 62.61 55.39 687 8.833 6.408 149.8 156.2
1 X 21.65 29.52 3354 1.617 1.606 37.5 39.11
A o 77.77 63.54 638.1 11.48 10.1 107.6 117.7
v o 73.58 80.1 662 15.8 14.54 102.3 116.9
3.3 Features of resource state B Maximum CpuR B Mean CpuR B Minimum CpuR

We select seven resource state features (total CPU usage,
total Memory usage, the total number of processes, the
number of current processes, the number of live slices, the
number of active slices, the total number of slices). The
total CPU usage and the memory usage are consumption
rates (%) used at the all slices on the node. A process using
the CPU cycle at the moment is called a ‘current process’.
We call a slice that used at least 0.1% of the CPU in the
last five minutes as a ‘live slice’, and contains a process as
a ‘active slice’. Because multiple slivers are running simul-
taneously, and share the resource on the node, the number
of the slices is one of important features. The features of
the resource state are :

CpuR : Total CPU usage

MemR : Total Memory usage

Proc : The total number of processes
CurProc : The number of current processes
LiveC : The number of live slices

ActiveC : The number of active slices

TotalC : The total number of slices

Mean usage of the resource state with the anomalies
at all the sender nodes is shown in Table 4. While there
were significant differences in the usage at node J, there
were no significant differences in the usage at node (3 for
the anomaly estimation. We describe minimum, mean, and
maximum CpuR at all sender nodes in Figure 4. Although
the maximum CpuR at node 3 was increased to approxi-
mately 100 %, the anomalies did not occur. Thus, CpuR
would be inappropriate for the anomaly estimation. More-
over, it would be hard to design an anomaly estimator with
these features directly. The resource state is quantified by
the features for a PCA analysis.

3.4 Principal component analysis

PCA is a dimensionality-reduction technique that is widely
used for applications such as dimensionality reduction,
lossy data compression, feature extraction, and data visu-
alization. Moreover, PCA has been used in internet traffic
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Figure 4. Minimum, mean, and maximum CpuR at all
sender nodes.

analysis [17][18]. It seeks a space of lower dimensional-
ity, known as the principal subspace, such that the orthog-
onal projection of the data points onto this subspace max-
imizes the variance of the projected points. An alterna-
tive definition of PCA is based on minimizing the sum-of-
squares of the projection errors. If we consider the general
case of an M-dimensional projection space, the optimal
linear projection for which the variance of the projected
data is maximized is now defined by the M eigenvectors
U1, UD,...,Uj,...,ups Of the data covariance matrix S corre-
sponding to the largest M eigenvalues A1, Ag,...,\iy.... Apr.
The eigenvector u; is known as the first principal compo-
nent, and it has the maximum entropy of data. The eigen-
values are arranged from large to small, so that Ay > Ay >
yeey Ai >y, > Apns. Moreover, they are expressed as a
percent of the total variance. The cumulative percentage of
total variance s; accounts for by the current and all preced-
ing proportions. The sum of all the eigenvalues is equal to
the number of variables. There is no obvious meaningful
components from the trivial components. Most researchers
would agree that the first and second components are prob-
ably meaningful, but it is difficult to decide exactly. Previ-
ous works [19][20] recommended A\; > 0.7 or s; > 0.9 as
the meaningful components.

4 Analysis results

We applied PCA to a seven dimensional matrix of the re-
source state, and the eigenvalues and the cumulative per-
centage of total variance are described in Table 5. The top
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Table 5. Eigenvalues and cumulative percentage of total variance.

PC 1 2 3 4 5 6 7
i 5.983 | 0.660 | 0.240 | 0.092 | 0.016 | 0.009 | 0.000
S; 0.855 | 0.949 | 0.983 | 0.996 | 0.999 | 1.000 | 1.000

Table 6. Component loadings.

PC 1 2 3 4 5 7
CpuR -0.355 | -0.294 | -0.887 | -0.025 | 0.006 | 0.015 | 0.000
MemR -0.387 | 0.227 | 0.109 | -0.837 | 0.093 | 0.279 | 0.000

Proc -0.402 | -0.148 | 0.200 | -0.102 | 0.133 | -0.865 | 0.000

CurProc || -0.371 | 0.483 | -0.017 | 0.420 | 0.658 | 0.138 | 0.000
LiveC -0.365 | 0.536 | -0.044 | 0.207 | -0.718 | -0.067 | 0.122
ActiveC || -0.373 | -0.464 | 0.303 | 0.180 | -0.039 | 0.296 | 0.658
TotalC -0.390 | -0.322 | 0.261 | 0.193 | -0.153 | 0.251 | -0.743

two principal components account for 95% of the cumula-
tive percentage, and are sufficiently enough to describe the
original resource state. Component loadings are the corre-
lation coefficients between the variables and principal com-
ponents. It is defined as Component loading = v/ Aiu;.
These values are shown in Table 6.

As mentioned earlier, the first principal component
captures the maximum entropy of the data. In the analy-
sis results, the first component has a negative relationship
of the all resource features. It depicts the workloads on
the node. If a principal component score at the first com-
ponent is close to the positive, the resources on the node
are idle. Conversely, if the score at the first component is
close to the negative, they have busy states. For example,
when CPU and memory are used by the user, the other re-
source features are increased. The second component has
a positive relationship of MemR, CurProc, and LiveC and
a negative relationship of CpuR, Proc, ActiveC, and To-
talC. The second component relates to the difference in the
resource state. Moreover, LiveC and ActiveC were larger
than CpuR. Thus, this result implies that these features are
more important than CpuR, and an anomaly estimator can
be designed without CpuR. The other components have the
very small eigenvalues, and it would be hard to describe the
resource state.

We show the scatter plot of the first and second com-
ponent scores in Figure 5. It provides us with a simple view
of the resource state for the anomaly estimation. In the scat-
ter plot, there were three cases (A, B, and C). The scores
of the first component at case A were close to the nega-
tive, and the scores at the second component were higher
than case B. The resource state at case A was the state at
the nodes X\ and v. Thus, case A is the resource state of
anomalies. Although the scores of the first component at
case B were similar to case A, the scores at the second com-
ponent were lower than case A. These scores indicate the
resource state at the node (3, and there are no anomalies.
The scores of the first component at case C are greater than
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zero. The resource state was idle, and this case corresponds
to the state at the node §. Instead of the CPU availability,
the first and second component enable the anomalies to be
estimated.

+: LiveC, Memory, CurProc
-+ CpuR, Proc, ActiveC, TotalC
®

2nd component

- : LiveC, Mefnory, CurProc
+:CpuR, Prdc, ActiveC, TotalC
T

+: CpuR, Memory, Proc; 2 0 2

4 .. CpuR, Mermory, Proc, CurProc,
CurProc, LiveG, ActiveC, TotalC

LiveC, ActiveC, TotalC
1st component

Figure 5. The first and second component scores.

5 Conclusion

We applied PCA to the seven dimensional matrix gathered
from the resource state at anomalies and on anomalies to
establish the criteria of the anomaly estimation. In the anal-
ysis results, we showed that the top two principal com-
ponents account for 95% of the original data set, and are
sufficiently enough to describe the original resource state.
Component loadings and a scatter plot of the first and sec-
ond component scores provide us with a simple view of
the resource state for the anomaly estimation. The first and
second component, instead of the CPU availability, enable
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anomalies to be estimated. In the second component, live
and active slice count are larger than total CPU usage, and
an anomaly estimator can be designed without total CPU
usage.

In future work, we will gather the dataset from mul-
tiple sites on the virtualized network testbed, design the
anomaly estimator with the criteria. If we observe de-
creases in throughput on the virtualized testbed, the esti-
mator will calculate the first and second component scores
from the resource state, compare them with the scores of
the anomalies, and estimate whether the anomaly or not.
Finally, we will evaluate the accuracy rate of anomaly esti-
mation using the estimator.
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