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Motivated by performance evaluation of a computer communication system, we consider a renewal input, general service time, 
single-server, and infinite-capacity queuing system with generally distributed time-out threshold.  We obtain two-moment 
approximate formulas for the mean system performance measures (including the mean number of customers in the system and the 
mean response time) by using the diffusion process with the reflecting barrier.   Our tele-traffic model includes the standard G/G/1 
system without time-out scheme as a special case.  From performance comparisons between our diffusion approximation and 
simulation results, we also provide refining formulas. 
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I. INTRODUCTION 
 

UEUEING models with time-out schemes are frequently 
encountered in computer communication systems. By the 

time-out scheme we mean that a customer arriving at a service 
system has to leave the system when its waiting time reaches a 
pre-assigned time limitation.  This pre-assigned time 
limitation will be referred to as time-out threshold and denoted 
by Γ.  The customer will receive the service if it’s waiting 
time is less than Γ.  The customer will be rejected if its 
waiting time reaches Γ.    

For instance, in a telephone system we can see a situation 
where a call whose waiting time reaches the time-out 
threshold Γ will be rejected by a switching node.  In a 
computer network an incoming packet to a processor buffer 
can be also rejected due to a time out scheme.  In a recently-
developed web service system, a user’s session connection 
can also be cut off due to a time-out scheme; see Sery & Beale 
[17] for HTTP server operation. 

We use the following queueing notation originally 
introduced by Kendall: A/B/c-T, where A stands for the 
arrival process, B the service time distribution, c the number 
of servers, and the last (-T) stands for the time-out threshold 
distribution.  For example, M/M/1-D signifies a Poisson 
arrival (exponential inter-arrival time), exponential service 
time, single-server system with deterministic time-out 
threshold.  E2/G/1-M signifies a two-stage Erlang arrival, 
general service time, single-server system with exponential 
time-out threshold.  

 There has been much interest in exact approaches for the 

queueing models with time-out schemes.  Barrer [3,4] 
presented the M/M/1-D system, Finch [6] treated the G/M/1-D 
system, and Rao [16] analyzed the M/G/1-M system.  Stanford 
[18] formulated the G/G/1-G system.  However, these existing 
results contain complicated numerical calculations including 
integrals, and it is so hard to calculate a performance measure, 
e.g., the mean number of customers in the system via these 
previous results.  
 The goal of this paper is to present an approximate formula 
on the mean performance measures (including the mean 
number of customers in the system and the mean waiting time) 
for the G/G/1-G system.   

The rest of this paper is organized as follows.  Section II 
describes our queueing model in details.  We introduce our 
stochastic assumptions and key notations for the G/G/1-G 
system. In Section III we approximate the queue-length 
process by a diffusion process with a reflecting barrier (RB) as 
in Heyman [8] who treated the standard G//G/1 system 
without any time-out scheme.  We determine the diffusion 
parameters arising out of the diffusion (Fokker-Planck) 
equation, which is an essential part of this paper. We then 
derive a simple approximate formula for the mean system 
performance measure.  The derived formula thru the diffusion 
approximation is seen to be positive even if the offered traffic 
is zero (arrival rate λ = 0).  Thus we propose a refined 
approximate formula which is reduced to zero whenever the 
offered traffic is zero.  Section VI verifies the accuracy of our 
proposed formulas thru the simulation results.   In Section V, 
we summarize our results and mention future works to 
conclude our remarks. 
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II. OUR TELE-TRAFFIC MODEL  
 

Let X be an independent, and identically distributed (iid)   
random variable (rv).  The mean, variance, and squared 
coefficient of variation (cv) for rv X are respectively denoted 
by E(X), σX

2, and CX
2.  We have by definition 
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Fig. 1  G/G/1-G queuing system with time-out scheme. 
 

We consider a stochastic service system assuming the 
followings; see Figure 1. 
 
i) Customers arrive independently each other at a single-

server system. 
ii)  The inter-arrival time of the customers is an iid rv, A.  The 

arrival rate is denoted by λ.  We then have 

)(
1
AE

=λ           (2.2) 

iii) The service time of a customer is an iid rv, B.  The service 
rate is denoted by μ.  We also have  

)(
1
BE

=μ           (2.3) 

iv) The capacity of the waiting room is infinite. 
v)   A customer has to leave the system (or to be rejected) 

whenever its waiting time reaches a time-out threshold Γ, 
which is an iid rv.  The time-out threshold rate is denoted 
by γ.  Also, we have 
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1
Γ

=
E
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It should be noted that if we let the time-out threshold be 
infinity (Γ = ∞) the time-out scheme model is reduced to the 
standard queueing model without any time-out  In other words,  
the standard model is a very special case of  the time-out 
scheme. 

We define the traffic intensity by 

μ
λρ =            (2.5) 

III. TELE-TRAFFIC ANALYSIS 
 
1) The Probability Density Function 

 
We approximate the queue-length process (the stochastic 

process generated by the number of customers in the system at 
time t) { N(t) | t ≧  0 } by a diffusion process with RB 
(Reflecting Barrier) boundary as in Heyman[8].  To be more 
exact, if we denote by f(x,t) the probability density function 
(pdf)  of N(t): 

{ }dxxtNxPdxtxf r +<<≡ )(),( ,   (3.1) 

the pdf  f(x,t) satisfies the forward Kolmogorov (Fokker-

Planck) equation:  
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subject to the RB boundary condition: 
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Here, a and b be the infinitesimal mean and variance of the 
process, called as the diffusion parameters in short which will 
be determined later. 
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Fig. 2  Modeling via diffusion equation. 

 
Assume the steady state from now on.  We denote the steady-
state pdf by 
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    (3.4) 

The diffusion equation and RB boundary condition becomes 

the following equations: 

 
f

dx
dbf

dx
da 2

2

2
0 +−=       (3.5) 

0
2

lim
0

=⎥⎦
⎤

⎢⎣
⎡ +−

→
f

dx
dbaf

x
      (3.6) 



> IC2008 < 
 

3

Solving the equation (3.5) under the RB condition (3.6) for 
f(x), we straightforwardly have: 

x
b
a

e
b
axf

22)( −=      (3.7) 

2) The Mean Performance Measures 
 
The mean number of customers in the steady state, E(N), can 
be derived from the pdf f(x) as: 

a
b

dxxxfNE
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        (3.8) 

The mean response time, E(R) is now obtained thru Little’s 
formula [1,2] which links the mean number of customers in 
the system (time-average) and the mean response time 
(customer-average): 
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3) Diffusion Parameters 

 
It remains to decide the diffusion parameters a and b.  For 

our G/G/1-G time-out model, we denote by N(t) the number of 
customers in the system at time t.  Similarly, we denote by 
NA(t), NΓ(t) and NB(t) the cumulative number of arrivals, the 
cumulative number of reaching time-out thresholds, and the 
cumulative number of departures during the time period  

{ }txcRxt ≤<∈= ;],0(       (3.10)  

We then have 
)()()()0()( tNtNtNNtN BA −−+= Γ   (3.11) 

For any renewal process {M(t), t≧0} with mean m and 
variance V of the inter-event time, we have 
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where N(α,β2) signifies the normal distribution with mean α, 
variance β2, and  ～ signifies the asymptotically equality in 
distribution as time goes to infinity (t  ∞ ).  See Hoshi 
et.al.[11]  for the proof  of (3.11). 
 Thus, we have 
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Since {NA(t), t≧0} is a renewal process, we have from (3.12) 
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The process {NΓ(t) , t≧0} is not always renewal, but, in 
heavy traffic (ρ is close to 1), the server is expected to be 
occupied most of the time, so we can regard NΓ (t) as a 
renewal process.  Thus, following the argument above, we 
have 
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Similarly, we have 
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The diffusion coefficients (a, b) have the following 
relationship as in Newell [15]: 
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It follows from (3.11),(3.13)-(3.17) that 
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Similarly, we have 
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In the M/M/1-M system, we can derive these diffusion 
parameters (a, b) via a direct approach, see  Appendix. 

 
4) Approximate Formulae via Diffusion Process 
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Substituting our obtained diffusion parameters (3.18), (3.19) 
into (3.8) yields an approximate formula on the mean number 
of customers in the system: 
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Similarly, substituting the diffusion parameters (3.18), (3.19) 
into (3.9), we have an approximate formula on the mean 
response time:  
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5) Refining Formulae 
 
Whitt[23] noted that refining the diffusion approximations is 

necessary, since the diffusion approximations do not result in 
the well-known explicit formulae for special cases.   However, 
there are very few explicit formulas for our time-out scheme 
models.  Therefore, as for our refining, we adopt a trivial 
situation where the mean number of customers [ E(N) ] should 
be zero (the system should be idle) when the offered traffic is 
zero (ρ = 0).  Observing this crucial but trivial point we have 
the following refinement equation: 

0Re )()1()()(
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Our refinement E(NPrpo) defined by the right-hand side of 
(3.20) is zero when the offered traffic is zero (ρ = 0), 
satisfying the trivial point as mentioned above.   The 
refinement E(NPrpo) converges to our diffusion approximation 
E(NDiff) as the traffic intensity tends to unity (ρ  1).  
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IV. NUMERICAL EXAMPLES 
We compare our approximation (diffusion approximation 

and refined approximation) results with the simulated results.  
We present the mean number of customers E(N) in the system 
as a function of the traffic intensity ρ. Here, we assume the 
time is normalized by the mean service time, i.e., μ =1.0.  

Figure 4 considers the M/M/1-D system. We assume γ = 0.5, 
0.1, 0.01. Our proposed refined approximation is seen to be 
accurate very well.  The diffusion approximation accuracy is 
not bad except for light and moderate traffic.   
Figure 5 considers the M/M/1-M system indicating the 95% 

confidence interval via Student-t distribution.  We assume 

γ=0.01. We see the almost same accuracy of our 
approximations as in Figure 4. 
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Fig. 4  M/M/1-D system performance. 
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Fig. 5 M/M/1-M system performance. 
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Fig. 6  E2/ E2/1-E2 system performance. 
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Figure 6 considers the E2/E2/1-E2 system.  We also assume 

γ=0.01.  We see the almost same accuracy of our 
approximations as in Figures 5 and 6. 

It turned out that the proposal approximation is excellent 
accuracy by these examples of the numerical value. It is 
shown that it is enough practicably accuracy at a heavy traffic 
about a diffusion approximation formulae.  

V. CONCLUSION 
A computer communication system performance leads to 

our general (G/G/1-G) time-out model.  Our queueing model 
includes the previously treated queueing models [3,4,6,14,16] 
as special cases, and it is identical to the one by Stanford [18].  
However, Stanford’s approach does not enable us to obtain 
the mean system performance measures (the mean number of 
customers in the system, and the mean response time).   

As our analytical approach we have taken the diffusion 
approximation by Heyman [8] who treated the standard G/G/1 
model without any time-out scheme.  We have continued 
Heyman’s effort, and determined the diffusion parameters for 
our time-out model.  Based on the diffusion parameters, we 
have derived the mean system performance measures.  We 
have further refined to propose approximate formulae on the 
mean performance measures for the time-out model. 

It is our main contribution to present two-moment very 
simple approximate formulae on the mean performance 
measures for the (G/G/1-G) time-out model.  It is left as a 
future work to seek for more accurate formulae which are 
consistent to the exact result for a special (i.e. M/M/1-M) 
model.  It also remains to apply our results for obtaining the 
optimal time-out threshold. 

APPENDIX 

A) An Alternative Derivation of the Diffusion 
Parameters for the M/M/1-M System 

 
We consider an M/M/1-M system.  Recall that customers 

arrive according to a Poisson process with rate λ, and the 
service-time is exponentially distributed  with meanμ-1.   The 
time-out threshold is also exponentially distributed  with mean 
γ-1. 

Let N(t) denote the number of customers in the system at 
time t, and we introduce the transition probability as  
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By using the Markov process theory [1,2], we have the 
following equation: 
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for any time t > 0 and any nonnegative integer n=1,2,….  The 
initial condition is given by 
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and the boundary condition is given by 
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For any bivariate function G, we have Taylor’s expansion 
as   
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Putting x=t, y=n, h=0 in (A.5), we have
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Replacing G(t, x) by the transition probability π(t, n; n0) , and 
comparing term by term (A.2) subject to (A.3) 
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Note that equation (A.8) corresponds to the diffusion 
(Fokker-Planck) equation (3.2).  Comparing the coefficients 
of (A.8) and (3.2), we have the diffusion parameters (a, b) as 
the followings:  
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