高速ネットワークを用いたコンピュータアーキテクチャ A Computer Architecutre Utilizing the Fast Network

六田 佳祐[†] 岡田 耕司[‡] 湧川 隆次[†] 重近 範行[†] 村井 純[†] Keisuke Muda Kouji Okada Ryuji Wakikawa Noriyuki Shigechika Jun Murai

1. 背景

現在のコンピュータアーキテクチャでは、コンピュータはそれぞれ接続された CPU、メモリ、ハードディスクや周辺機器等のパーツによって構成されている. また、それらのパーツは様々な規格に基づいて、物理的にコンピュータに接続されている.

本研究では、それらパーツを接続しているバスを、IPネットワークによって実現するアーキテクチャを開発する。現在のコンピュータアーキテクチャでは、「コンピュータ」単位でネットワークが構成されている。新しいアーキテクチャでは図1に示すように、より細分化された「パーツ」単位でコンピュータネットワークが構成されるようになる。このようなコンピュータアーキテクチャを本稿では"All-IP Computer"と定義する。

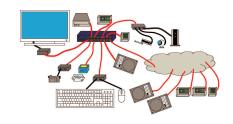


図 1: All-IP Computer アーキテクチャ

2. 実現する世界

All-IP Computer により, 次のような世界が実現される.

- 遠隔地にあるパーツの利用: ネットワークを利用すれば直接接続されていないパーツでも, ネットワーク経由でコンピュータに接続する事ができる.
- パーツの動的な変更: ネットワーク接続の接続・切断によって、ユーザはコンピュータの蓋を開ける事なく、必要に応じて自由にパーツを動的に変更できる.

3. Keyboard over IP

本研究では、キーボード入力をネットワーク経由で送信・利用する Linux 用デバイスドライバである Keyboard over IP を作成した. なお Keyboard over IP では、キーボード接続を受け付けるホストを"サーバ"と呼ぶ. それに対して、キーボードが操作されるホストを"クライアント"と呼ぶ.

Keyboard over IP は、図 2 に示す構成で動作している. Keyboard over IP は、Linux カーネルの機能である Linux Input Subsystem を利用して実装されている. Linux Input Subsystem とは、Linux における入力デバイスの管理と処理を行なう機能である. 入力デバイスは

図 2: Keyboard over IP の構成

この機能によって、デバイスファイルとして抽象化されている. このデバイスファイルへの読み書きとその情報の IP 転送によって、Keyboard over IP は機能している.

キーボード入力に対するコンピュータ処理の体感速度は、そのコンピュータの使用感に大きく影響される。ネットワークを用いてパーツを接続すると、ネットワークの遅延に応じてこの使用感が左右される可能性がある。

本研究では、Keyboard over IP の動作を確認するため、FreeBSD の dummynet bridge を利用した仮想ネットワークを用いて実験を行なった.実験では dummynet bridge で遅延を発生させ、その上で遅延と Keyboard over IP の動作状況の関係を比較した結果を表 1 に示す.

表 1: 平均 RTT と Keyboard over IP の動作の関係

平均 RTT	動作状況
139.331ms	遅延が出始める
265.820 ms	入力が落ち始めるが, 利用は可能
299.747ms	入力落ちが多く, 利用が難しい
399.500 ms	入力落ちが激しく, 実用的ではない

本実験により、人間が違和感なく Keyboard over IP を利用できるネットワーク上の遅延は、Round Trip Time (RTT) が約140ms以下の場合であることが分かった. 現在のコンピュータのパーツは、それらパーツが占有できるバスの上で動作するように設計されている. 遅延の大きいネットワーク上でこれらのパーツを動作させる事は難しい. したがって、本アーキテクチャの実現には低遅延・超高速ネットワークの普及が不可欠である.

4. 今後の研究

キーボードは単純なキャラクタ型デバイスである. また, その利用も Linux Input Subsystem によって隠蔽されており, 容易である. Keyboard over IP は All-IP Computer アーキテクチャの一部分であり, これだけでは All-IP Computer アーキテクチャは実現しない.

キーボード以外にも、コンピュータを構成するパーツは様々である.様々な規格・パーツを利用できる仕組みを本研究においては開発していく.このアーキテクチャが実現した時、必要に応じて自由かつ動的に環境を構築できる、新しいコンピュータアーキテクチャを利用する事が可能となる.

 $^{^\}dagger$ 慶應義墊大学 環境情報学部 Faculty of Environment and Information Studies, Keio University

[‡]慶應義塾大学 政策・メディア研究科 Graduate School of Media and Governance, Keio University