

Design and Implementation of Secure, Content-Based Traffic Control

Internet Conference 2002
31 October 2002

Joe Stevens

j.stevens@jens.co.jp
+81-3-3500-2373

Shadan Saniepour
s.shadan@jens.co.jp

+81-3-3500-2536

JENS Corporation

Hibiya Dai-biru 10F
1-2-2 Uchisaiwai-cho

Chiyoda-ku, Tokyo 100-0011
JAPAN

FAX: +81-3-3500-2442

Abstract

The exponential growth of Internet traffic has made public servers increasingly vulnerable
to unauthorized accesses and intrusions. In addition to maintaining low latency for the client,
filtering unauthorized accesses has become one of the major concerns of a server maintainer.
In this article we introduce the design and implementation of a load balancer that
distinguishes between the traffic coming from clients and the traffic originated from the
attackers, in an attempt to simultaneously mitigate the problems of both latency and security.
We then present the results of a series of stress and scalability tests, and suggest a number of
potential uses for such a system.

���� ����

�

1. Introduction

Over the past decade the internet and
online services have become an
increasingly important asset to many
businesses. To cope with the ever
expanding role of internet services such as
the World Wide Web, industry has
developed a variety of solutions for load
balancing and high availability which can
be used to ensure high quality service
despite network equipment failure or
administrative error. At the same time,
however, there has been a steady increase
in the threats presented to such sites by
unauthorized intrusion and appropriation
of these systems and the data they contain
by so-called hacker. The most advanced
clustering and balancing technology can be
rendered useless if the security of the
underlying server is inadequate to repel
these threats.

In this article we introduce the design and
implementation of a load balancer that
distinguishes between the traffic coming
from clients and the traffic originated from
the attackers. This system is an attempt to
simultaneously solve the problems of load
balancing and unauthorized intrusion. If,
in the process of forwarding requests, the
balancer detects traffic is an attack on the
server (‘an exploit’), it is then directed to
an alternative server - a type of honeypot.
Conventional detection and forensics
methodology can then be used to gather
information on the intruder, who will be
unaware that they are not using a “real”
server. Thus, the system will not only
protect mission critical servers from
unauthorized access in a manner
transparent to the user, but allow for
detailed data to be collected, which can
later be used to take appropriate legal
action against the intruder.

This article is organized as follows:
Section 2, “SecureDirect” describes the
goals of the project, as well as the design

and implementation of our content based
load balancer. The experimental design
and results are discussed in section 3,
“Experimental Results”. Section 4,
“Applications” discusses a number of
potential uses for this type of security
mechanism, and section 5, “Future
Directions” presents a number of areas
where further research is required. The
paper concludes in section 6.

2. SecureDirect

Recent years have seen a drastic increase
in the popularity of Network Intrusion
Detection systems (NIDS). A plethora of
commercial products, as well as the
availability of open source solutions such
as Snort [7], have moved NIDS into
mainstream usage by both security
administrators and providers of managed
security service.

Existing products provide substantial
network monitoring capacity, and have
been largely successful at providing
accurate reports on unauthorized activity.
While these products have gotten fairly
good at monitoring and reporting on
unusual activity, it has been stated, that the
biggest problem with IDS is “intelligently
reacting to their output” [3]. If an IDS
detects an attack in progress, what action
should be taken? Furthermore, even if
the organization deploying the IDS has the
foresight create an attack response plan, if
an administrator receives a page at 4:00
am, what are the chances that s/he will be
able to react quickly enough to prevent the
intrusion? Under most existing systems
chances for timely prevention of the
intrusion highly depend on the quick
reaction of the human administrator. All
too often IDS logs are only consulted long
after the damage from an attack has been
done [3].

SecureDirect is an attempt to address this
problem: by providing a fully automated

�

response to specific network intrusions, it
can eliminate the need for human decision
making, and thus mitigate slow human
response times. While there is some
existing work in this field, it has fallen into
two categories: Honeypots, and
Firewall-based solutions. The first of
these, deploying network Honeypots,
involve setting up fake-servers that look
more attractive than the actual production
machines (e.g., payroll.mycompany.com),
in hopes that an attacker will target them.
This type of project has seen a great deal
of academic interest [5] and it has begun to
see commercialization [6]. This approach
provides excellent monitoring and forensic
evidence. The downside, however, is that
while it serves to distract potential
attackers, if an attacker does decide to
attack the production server, it offers no
protection what-so-ever.

An alternative is to link an IDS system to a
Firewall. The most well-known example
of this technique is the open-source
Hogwash project [4]. This methodology
involves selectively blocking packets that
are identified by the IDS system1. In a
sense, this solution is exactly the opposite
of Honeypot deployment, in that it
provides excellent protection for the server,
while offering no opportunity for forensic
analysis, and very little monitoring
capability, since anything identified as an
attack is immediately blocked. An
additional danger in this type of system is
that if the IDS misidentify acceptable
traffic as an attack, a site could end up
blocking desired viewers. More
worrisome is that in this type of system the
attackers will be able to realize that they
are being blocked, and thus may find a
way to exploit the Firewall/IDS
combination to create a denial-of-service
situation.2

���

1 Which in Hogwash’s case (as the name
suggests) is Snort.
2 For example, sending packets that contain

SecureDirect, by implementing content
based load balancing, attempts to correct
the shortcomings of both of these systems.
Most importantly, it provides direct
protection by not allowing “bad” traffic to
the production servers. Additionally, by
directing traffic to a Honeypot setup to
look (from the outside) exactly like the
production machine means that the
security administrator will have ample
opportunity to gather forensic evidence
(through traditional NIDS deployment,
etc), with the additional benefit of not
allowing the attacker to realize that his
access to the production system(s) has
been cut-off.

To summarize, our objective for
developing the current system can be
described as follows:

The problem of high availability and
security have thus far been dealt with
independently, instead, we propose to deal
with them as a single problem. Through
this integrated solution we show that we
can achieve a higher level of both security
and availability. Additionally, we want to
create an opportunity for adequate
information to be gathered about an
intruder, in order to facilitate legal action
or prevent further intrusion.

2.1 Architecture

SecureDirect consists of two main entities,
namely, the load balancer entity and the
intrusion detection system. These entities
run as separate processes but information
on user requests is shared between them.
The architecture of SecureDirect is
illustrated in Figure 1.

���

attacks with your IP spoofed as a popular web
site, or the network DNS server.

�

The activity at each numbered point in the
above diagram can be described as
follows:

1. The load balancer receives the request

to the virtual IP address. If the packet
containing the request has been
fragmented, it is reassembled.

2. The Load balancer opens a TCP
connection to the IDS Process, and
sends the content of the packet (less
the headers) over that connection.

3. The IDS process checks the content of
the packet against its database of
known attacks, and returns a Boolean
result to the load balancer over the
same TCP connection.

4. On receiving the result, the load
balancer closes the TCP connection.
If the result from the IDS was “true”
(indicating the presence of an attack)
the packet is forwarded to the
Honeypot. Otherwise, a server is
selected from the active server pool in
a round-robin fashion, and the packet
is forwarded to the server.

The design of this system entailed
overcoming a number of challenges.
What these challenges were, and how they
were addressed is discussed in the
remainder of this section.

2.2 Load Balancing

In designing a load balancer for
SecureDirect we have three main focuses,
namely, to provide High-Availability by
handling hardware failure in the

web-cluster, maintain high speed access to
the cluster, and ensure the balancer itself
does not become a security hole. High
availability is achieved by simply pinging
the servers at regular intervals, and
removing them from the server pool if no
response is received. In order to deal
with the speed problem, we have designed
our system so that the traffic coming from
clients is passed through the load balancer
and the load balancer has complete
control over the traffic delivered to the
web servers. However the traffic in the
opposite direction, from server to clients,
is directly passed to the clients. As the
major part of the traffic usually consists of
the contents delivered to the clients (e.g.,
web contents), this strategy will drastically
decrease the traffic of our load balancer,
and prevents it from becoming a
bottleneck.

The second challenge is to secure the load
balancer. Our strategy is to protect it
from any irrelevant traffic. Only traffic to a
specific port on the virtual IP will be
processed by the load balancer and any
other malicious access is simply ignored.
The load balancer uses a technique known
as ‘Proxy-ARP’ to respond to ARP
requests from the router to the virtual IP
address. This way the operating system of
the server machines automatically skip all
the packets destined to virtual IP address,
while our load balancer daemon reads
them off the wire and decides about its
next action; whether to balance the load or
redirect the Honeypot.

The web servers have their loopback
interface3 configured with the virtual ip
address, but are set not to respond to arp
packets. This, at the network layer, there
is no way to tell which servers are
configured with the virtual IP.

The load balancer process is implemented

���

3 Interface lo0:1 on Solaris.

�

as a multi-threaded process in C. The main
thread is responsible for reading packets
off the wire and if they are destined to
virtual IP and their destination port is our
desired service port, it hands them to the
control thread. The control thread then
communicates with the IDS process and
decides to pass the packet to the
production servers or direct it to the
Honeypot. The system implemented for
this paper runs under solaris, and takes
advantage of solaris kernel level threads to
improve performance. Reading and
writing packets to and from the Ethernet
interface is done using Solaris’ DLPI.
The Data Link Provider Interface (DLPI)
is a UNIX STEAMS standard that defines
an interface to the Data Link Layer of the
OSI Refrence Model. The use of DLPI
and a multithreaded design allows us to
capture packets while assigning a minimal
load to the main thread, and thus prevent
packet loss.

In case of TCP applications, after
redirecting a request to a server, the load
balancer process should hold the
information about which request is
forwarded to which server in order to
forward all of the ACK packets in a
particular session. We keep the
information about each connection in a
table. As the load balancer only passes the
traffic from client to server, it is unable to
see the last FIN sent by the server, and
therefore there is no way that the load
balancer can find out when the
conversation between two hosts is over.
Therefore we define a time stamp for each
connection. Each time a packet is received
on a connection its time stamp is updated.
The connections will be removed from the
table if its time stamp is not updated for a
certain amount of time (which has been set
at arbitrarily at 4 minutes during our tests).

The design of this load balancer is very
similar to Linux Virtual Server [10]. A
significant difference, however, is that we

use ARP proxy to protect the load balancer.
Comparing to other existing software
[1,2,8] our load balancer has the advantage
of passing only the incoming traffic and
therefore the chance of the load balancer to
become a bottleneck is decreased.

2.3 Intrusion Detection

Internally, the implementation of the IDS
portion of SecureDirect is very simple.
The IDS process runs as a concurrent TCP
server, and listens for client requests on a
specified port. When a connection is
made, the IDS forks a child process when
receives the content of the packet, and
then checks it against a database of known
attacks. It then returns the result of this
check to the load balancer process, which
makes the decision on whether to forward
the request to the production server cluster,
or the Honeypot. The IDS process is
written in Perl 4 to take advantage of its
strong and simple regular expression
support, and fast pattern matching engine.
The signature database is taken directly
from the open-source IDS Snort.

The multithreaded design of the load
balancer ensures that multiple requests
from a client will not get ‘mixed up’,
however, it is possible that an attack would
occur from a single IP at the same time as
a valid request. In this case, the initial,
harmless packets may be safely forwarded
to the real servers until the IDS process
finds the attack-packet and detects the
signs of intrusion. At this point, it
immediately informs the load balancer
process to discontinue forwarding packets
to the real server, and to send an RST
packet to the corresponding server to end
the connection. Thus, the server will never
receive the attack. In the attacker side,
observing silence from the server side
causes it to assume the server has crashed

���

4 http://www.cpan.org

�

and possibly causes it to try to re-connect.
However from this point, after detecting
the intrusion, all the incoming traffic from
the attacker's IP will be forwarded to the
Honeypot.

One of the key points in maintaining speed
of this system is that, once an IP is
recognized as an Attacker IP, packets
coming from that source are not passed to
the IDS process any more. The load
balancer process directs the incoming
traffic from attackers to the Honeypot.

2.4 The TCP Layer

SecureDirect is implemented for
applications that use TCP/IP as their
transport protocol. SecureDirect is
designed (like any good security product)
to be failed-closed [9] system, which
means if it crashes, it is no longer possible
to access either web server through the
virtual IP. Consequently the attackers can
not crash SecureDirect and access the
unprotected system.

One of the major challenges for
SecureDirect is to deal with attackers who
try to fool the system by forcing it to
analyze the packets inconsistent with what
is received in the end-system. In the cases
that the intrusion detection system runs at
the different host-OS than the end-system,
this can be a serious concern. The attacker
can take advantage of differences between
the IDS and the end-system in dealing with
the packets that do not fully comply with
the standard protocols, and send some
packets that are discarded by the end-host
but accepted by the IDS, or vice versa. If
SecureDirect uses TCP/IP, the
inconsistency between the IDS and the
end-host may appear in IP level or TCP
level [9].

TCP protocol uses sequence numbers to
preserve the order of the incoming packets.
The end-system waits until it receives all

the sequence numbers required for
re-assembling the data. If there is a
missing sequence number, the end-system
will not accept the consequent packets and
waits until it receives the packet with the
sequence number it is waiting for.
Therefore one way to try to fool the system
is to send two packets with the same
sequence numbers, one containing false
data to be accepted by the IDS and
discarded by the end-host, and the other
one containing the attackers desired data to
be accepted by the end host, and skipped
by the IDS. Thus, whenever it detects two
different packets with the same sequence
number (and a sane checksum) for one
connection, it considers it as an attack and
prevents the load balancer from sending
that packet to the end-host. Furthermore it
marks the source IP of this packet, as an
attacker IP, causing the load balancer to
forward all the consequent packets
originated from this IP to the Honeypot.

An alternative way to break into the
system is using IP fragmentation, hoping
that IDS and the end-host follow two
different methods for re-assembling IP
fragments. SecureDirect, however
re-assembles the IP fragmented packets in
the load balancer and forwards the
assembled packet to the end-host.
Therefore what IDS analyzes is completely
consistent with what end-host sees. This
type of implementation should drastically
reduce the chances of an attacker breaking
into the system.

3 Experimental Results

We conducted a simple experiment with
total number of three servers. All were
Sun Ultra 55 workstations running Solaris
9. In this section we describe the detail of
this experiment.

���

5 With a 270 mhz processor and 256 MB of
RAM.

�

3.1 Test Environment

A simple test environment requires a
minimum of 3 servers and 4 ip addresses.
Each server is assigned a single IP address
for basic TCP/IP connectivity, while the
fourth is used as a virtual IP, which will be
accessed by clients, and balanced by the
balancer to either of the two servers
depending on the contents of the client
request. This environment is illustrated in
Figure 2.

Com3

In this example, the virtual IP exists at
10.0.0.2. This is the only IP address ever
seen by the clients, likewise in a
production environment it would be the
only IP to have a DNS record, etc. While
this address is not actually bound to any of
the computers in the network, the load
balancer machine responds to ARP
requests from the router using proxy-arp.
When a request is received, it then
reassembles the packet (if fragmented),
checks the request against the IDS
signature, and forwards it to appropriate
server based on its content.
One of the keys to this system's security is
that the only system being accessed by
clients doesn’t actually exist. Thus, in
addition to the balancing being completely
transparent from the perspective of the
client, any attempts by an intruder to attack
the virtual IP on another port than the one
being balanced for, will be simply ignored.

Secondly, (as stated above) this type of
system serves not only to protect the server
intrusion, it can also be used to gather

information about the intruder. While the
load balancer itself doesn't gather any
information internally, the addition of a
Network Based Intrusion Detection
System (NIDS) on the network can be
used to perform this task, while the
intruder is harmlessly attacking the
Honeypot server.

3.2 Results

While the basic functionality of a
content-based load balancer is relatively
easy to achieve, such a system is only
useful to the extent that it is scaleable and
stable under load. At a modest load, the
balancer showed very stable performance:

0 200 400 600 800

Request Number

0.09

0.1

0.11

0.12

0.13
R

es
po

ns
e

tim
e

(s
ec

) rate=3600 pages/hour

Graph 1: Response Time for 3600 pages/hour

There are a number of spikes, likely due to
server-side or network conditions, but the
average response time is steady at
approximately 0.1 seconds per request.
This type of performance holds up well all
the way through the 14000 pages/hour
range, at which point variation in the
response pattern begins to become evident.
In Graph 2, there is a much larger number
of spikes, and the average response time
per page is slightly increased.

0 200 400 600 800

Request Number

0.08

0.12

0.16

0.2

R
es

po
ns

e
tim

e
(s

ec
)

rate=14400 pages/hour

Graph 2: Response Time for 14400 pages/hour

�

0 5000 10000 15000 20000 25000 30000

Load (pages/hour)

0

0.5

1

1.5

2

re
sp

on
se

 ti
m

e
(s

ec
on

d)

Graph 4: Average Response Time

By the time the web-benchmark is turned
up to 18000 pages per hour, the balancer is
clearly starting to show signs of stress.
The spikes have now become very regular,
indicating that the load on SecureDirect is
causing it to become less regular in
servicing request.

0 200 400 600 800

Request Number

0.05

0.1

0.15

0.2

R
es

po
ns

e
tim

e
(s

ec
) rate=18000 pages/hour

Graph 3: Response Time for 18000 pages/hour

If the request speed is increased above
18000, the balancer becomes overloaded.
At this point, the average response time
per request increases dramatically, and
after a period of 30-45 minutes under
constant load the balancer begins to drop
requests. The sharp increase in response
time can be seen in Graph 4.

An analysis of the source of the load
shows that it is entirely due to the Intrusion
Detection Process. The load balancer
process consumed a nominal amount of
CPU resource during every one of the
trails. The IDS process, however,
showed a load curve which increased in a
linear manner as the number of pages per
hour was increased.

0 5000 10000 15000 20000

Load (pages/hour)

0

5

10

15

20

C
PU

 u
sa

ge
 (%

)

Graph 5: CPU Load

While the linear nature of the IDS process
CPU usage suggests that SecureDirect able
to scale gracefully, it also highlights the
tradeoff between performance and security.
While there is certainly room for
optimization in our code, the act of pattern
matching all incoming TCP traffic is an
inherently CPU intensive activity. In our
tests, we used the full set of Snort rules6
pertaining to web attacks – which totaled
516 pattern matches per web request.
This checked for attacks against both Unix
and Windows based servers, as well as a
variety of scripting and database
applications. Performance could be
improved by only checking for attacks
against the type of software actually being
used7 , however the tradeoff would still
remain.

4. Applications

The introduction of SecureDirect into a
production system would require a slightly
more complex network design than the one
used in our experiments. To realize the full
potential of the system, a firewall and a
traditional NIDS system would be
required.

���

6 As provided with Snort 1.8.3.
7 For example, of the 516 rules, 94 of them
checked for attacks against Microsoft’s Internet
Information Server. If the site being protected
was based on Apache, these checks would be
irrelevant.

�

Com3

While we believe that content based load
balancing is a powerful security tool, it can
not replace more traditional security
practices such as firewalling, and network
or host based IDS. In the figure above,
the firewall8 allows incoming TCP traffic
on port 80 to the virtual IP address. All
other traffic is blocked. Incoming traffic
is picked up by SecureDirect, and balanced
to the appropriate server. When the
server responds, the response appears to be
from port 80 of the virtual IP address, and
thus no additional firewall rules are
required. Any attempt to access the
production web servers directly would be
dropped at the firewall9.

In the event of an Intrusion, in addition to
being redirected to a non-critical server by
SecureDirect, a NIDS monitoring the
network is present to record the intruder's
activity for latter action such as informing
her ISP, or local law enforcement.

5 Future Directions

Research remains to be done in several
areas. The current implementation of

���

8 This configuration assumes the use of a stateful
firewall. Similar performance could be
achieved by simply blocking all other ports at the
router, although in such a case an additional rule
allowing outgoing traffic from the virtual IP
would be required.
9 An even better configuration would be to give
the entire load balancer and web server network
segment private addresses, and perform
destination NAT to the virtual IP at the firewall.
The complexity of such a system, however, is
outside of the scope of this paper.

SecureDirect uses only simple pattern
matching on incoming TCP requests to
determine whether a particular request is
good or bad. While we feel this is
sufficient to protect against the majority
web-server attacks seen in the wild, it isn't
clear whether it is equally appropriate for
other protocols (SMTP, FTP. Etc).

Additionally, our simple implementation
of pattern based scanning is completely
incapable of protecting against
non-intrusive attacks such as Denial of
Service (DoS).

This situation can be remedied in one of
two ways: The IDS process can be made
much more robust while still relying on
pattern matching, or an alternate means of
intrusion detection, such as one based on
network traffic anomalies, can be
implemented. Both of these systems have
advantages and disadvantages. Reliance
on a more complex IDS process for load
balancing (such as the full output of Snort)
would allow for a much wider range of
detectable attacks, however, it would also
significantly impact performance and
increase administrator maintenance
requirements.

Furthermore, the current system required
two extra servers (the load balancer and
the honeypot) in addition to the production
machines being protected. If the system
is used to its potential (with the addition of
a NIDS and Firewall) an even greater
number of machines must be purchased
and managed. The financial and
administrative cost of such a system will
likely make it unattractive to all but the
largest web-sites. Ways of providing the
same functionality with a smaller number
of machines (and a lower administrative
overhead) are currently being investigated.

On a more technical level, the speed of the
system could still use a good deal of
improvement. There are two areas here

�

most in need of attention. The first
question involves how much data is
processed by the ids, and how well it is
examined. The experiment described in
this paper used web traffic to test content
based redirection. The text-based nature
of web traffic (and thus web attacks)
means that a simple pattern-based scan on
incoming HTTP requests is sufficient to
catch almost all known web attacks. This
is advantageous because the
traffic-scanning IDS process can be
relatively simple and fast (in our case, only
a few hundred lines of perl). A more
versatile solution would necessitate a
much more robust IDS, possibly even
utilizing other detection technologies (such
as anomaly based detection, etc), in order
to provide protection for a wider variety of
services. Such a system, however, would
quickly become a bottleneck.

Additionally, in the current system the IDS
and Load Balancer process are separated in
order to prevent the Load Balancer from
dropping packets if the IDS become loaded.
While this yields a performance advantage
for the both process internally, the
communication between the two consumes
considerable overhead. A number of
different methods for interprocess
communications were attempted (Unix
Domain Sockets, FIFOs, shared filespace),
and we finally chose TCP sockets for its
robustness and concurrency, but this came
with a relatively high cost in terms of
latency and CPU overhead.

6 Conclusions

Solving the problem of high availability
and security simultaneously offers the
opportunity for more reliability than
systems which solve the problems
separately, in addition to being easier to

implement, and offering increased
opportunity for recording and data analysis.
The integration of these two technologies,
however, is a non-trivial task. A fine
balance must be achieved between speed
and robustness of IDS features – it is
equally bad to have the web server crash
because an attack was missed, or drop
large amounts of traffic due to an overly
through IDS becoming a bottleneck.

Additionally, while a content-based load
balancer offers many advantages over
separate Load Balancing and IDS solutions,
it also suffers from the drawbacks of both.
While a properly designed and maintained
system can prevent the need for immediate
administrator intervention, substantial
resources in both time and equipment must
be spent if such a system is to bear fruit.

It has been said that the three things most
important to a server manger are Security
(the ability to withstand hacking),
High-Availability (the ability to withstand
hardware failure), and low-latency (the
ability to service requests quickly). With
the current implementation of secure direct,
the first two criteria, security and high
availability, are satisfied. In regards to
latency, our experiments have (once again)
shown that there is a trade-off between
security and performance. While
improving the efficiency of the
programming can mitigate this problem to
an extent, the trade-off is certain to remain,
and choosing the right balance will likely
continue to be a difficult task for the
system administrator. It is the authors’
opinion that this type of system could
provide a much needed additional security
tool, however, a good deal of streamlining
work remains before it could be widely
deployed.

�

7 References

[1] Balance, An open Source Load Balancing TCP Proxy: http://balance.sourceforge.net

[2] Big/ip: http://www.bigip.com/bigip/

[3] Bruce Schnier, Decrets and Lies: Digital Security in a Networked World, Wiley
Publications, 2000

[4] Hogwash: http://hogwsh.sourceforge.net/

[5] Honeypot Project: http://www.honeypot.org

[6] ManTrap: http://www.recourse.com

[7] Martin Roesch, Snort- Ligthweight Intrusion Detection for Networks, Proceedings of
LISA’99 : 13th System Administration Conference, Seattle, Washington USA, 1999

[8] Pen A load balancer for simple tcp based protocols such as http or smtp for Unix:
http://siag.nu/pen/

[9] Thomas Ptacek, Thimoty N. Newsham, Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection, Technical Report, Secure Networks Inc. 1998

[10] Wensong Zhang, Linux Virtual Server for Scalable Network Services, Ottawa Linux
Symposium, 2000

