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Abstract 

We present a new end-to-end transport protocol called Multi-
path Transmission Control Protocol (M/TCP) and its robust 
acknowledgement (ACK) schemes. M/TCP is designed as an 
alternative TCP option to improve reliability and 
performance of today’s Internet. M/TCP allows a sender to 
simultaneously transmit data via multiple controlled paths to 
the same destination. The protocol requires no modification 
in IP layer. In order to establish multiple paths, however, two 
endpoints communicating through M/TCP need to be 
subscribed to multiple ISPs1. Congestion control and error 
recovery in M/TCP are developed based on those in TCP. 
The ACK schemes introduced in this paper provide a 
mechanism to improve M/TCP performance over Internets 
with high packet-loss in an ACK channel. We compare 
performance of M/TCP with TCP Reno implementation using 
ns2 simulator. Simulation results show that M/TCP can 
achieve significantly higher throughput than TCP Reno in the 
presence of error model on forward and reverse paths. 
 
1. Introduction 
 
The explosive popularizations of personal computers and the 
growth of World Wide Web (WWW) have increased the use 
of the Internet beyond all expectations. Applications, which 
require high reliability such as Electronic Commerce, have 
come upon us. The networks used on the above-mentioned 
business should provide high performance, high throughput 
and high reliability. Meanwhile the Internet based on TCP/IP 
is the best-effort type of service. The quality of the Internet is 
not efficient enough to support such applications.  

Since there is a large amount of TCP traffic: 85-95 
percent of total packets are of the TCP type [1], TCP 
congestion control is an important task for improving the 
service provided to Internet users and the efficiency of 
network resource utilization. Selective Acknowledgement 
(SACK) [2] was reported as a TCP option.  SACK option lets 
the receiver inform the sender of data that has been received. 
The sender can then retransmit only the missing data 
segments. With the utilization of SACK option, reduced data 
transfer rate leads to higher overall throughput. Explicit 
Congestion Notification (ECN) [3] was suggested as an 
effective method to drop packets. Experimental study in [4] 
has shown the performance advantages of ECN for TCP short 
transfers. 

Nevertheless, the reliable service provided by TCP 
is still lower compared with the public communication 
network using multiple data paths for backup. An outstanding 
reason is that TCP implementations such as Reno and Tahoe 
[5, 6] are a single connection. If the network interface 
associated with the IP address goes down, the TCP 
connection needs to be reestablished [6]. Moreover, when 

network becomes congested and drops packet, a host running 
TCP implementation is not able to transmit data via other 
paths, which may provide lower delay and better throughput. 
All it can do is only reduce its rate and high-possibly 
retransmit the lost segments to the congested path, which 
may lead to packet loss again. Although there is no guarantee 
that consecutive packets to the same destination will traverse 
via the same path, most of them do. Therefore, M/TCP has 
been developed in our laboratory as an alternative TCP 
option to tackle with the problem. We showed performance 
advantage of M/TCP in the presence of error model on 
forward path [7]. The M/TCP used immediate ACK where an 
ACK is immediately and randomly transmitted via a path. 
However, applications over today’s Internet mostly operate 
over paths with a high degree of asymmetry due to significant 
load differences between forward path and reverse path. Due 
to loss of ACKs on reverse path, controlling congestion based 
on ACK counting results in underutilization of forward path 
[8]. For this reason, a better ACK scheme is needed to 
provide robustness under such conditions for M/TCP. 
 In this paper, we introduce and evaluate 
performance of M/TCP with new ACK schemes; duplicated 
ACK and duplicated&delayed ACK. M/TCP utilizes the 
extra bytes available in option field of the TCP header. We 
call multi-route option. Endpoints running M/TCP 
implementation can simultaneously transmit data via multiple 
paths to the same destination. M/TCP requires no 
modification in IP layer. What is needed is that two endpoints 
communicating through M/TCP must have multiple network 
interfaces to be subscribed to multiple ISPs as depicted in Fig. 
1. This is very similar to well-known multi-homing. M/TCP 
is compatible with both M/TCP entity and TCP entity. When 
a sender needs to establish a connection, it will check 
whether the other end is M/TCP entity or TCP entity. If the 
other end is TCP entity, data will be transmitted in the same 
manner as the current TCP. If the other end is M/TCP entity, 
the endpoints will communicate each other via M/TCP. In 
order to deal with communication via M/TCP, only transport 
layer needs to be modified. Congestion control in M/TCP has 
been derived from TCP congestion control [5]. Each route in 
M/TCP has its parameters to probe network congestion. The 
communication through M/TCP looks like multiple TCP 
connections in the whole network. From the viewpoint of 
application, however, M/TCP seems to be one connection as 
same as TCP does. 

M/TCP provides a better error-recovery strategy 
than Reno and Tahoe do by providing a mechanism to 
perform retransmission of lost segments to other paths 
whereby quick and reliable retransmission can be desirable. 
Furthermore, with the robust ACK schemes proposed in this 
paper, M/TCP can provide improvement over Internets with 
high packet-loss in an ACK channel by transmitting an ACK 
via all paths. 

                                                 Section 2 discusses related work. M/TCP together 
with the new ACK schemes are described in section 3. 1 Internet Service Providers 

  



Section 4 presents implementation and shows simulation 
results. Finally, we present conclusion and draw future work. 
 
2. Related Work 
 
The concept of multi-path data transmission is applied to 
widespread area of communication. Multi-path is adapted to 
routing connectionless traffic in ATM network [9]. The 
multi-path routing scheme provides a low cell loss ratio in the 
face of congestion. Multi-path is also utilized in Data 
Exchange II in Tokyo Electric Power Company [10]. An 
emergency information such as fire alarm is transmitted via 
multiple paths. Although a connection goes down, the 
information can arrive via other paths. This provides high 
reliability to the communication. 

A number of researchers have studies about multi-
path data transmission in IP layer [11]. Multi-route gateway2 
and IP tunneling is employed to establish multiple paths.  

 
 
 
 
 
 
 
 
 
 

Figure 1: Network Using Multi-Route Gateway 
 

As shown in Fig. 1, if source node and destination node are 
connected to the same ISP, it is high possible that a path is 
independently selected in each ISP. Therefore, it can be 
assumed that packets are transmitted via each ISP 
independently. In simulation [11], data transmission is 
divided into two modes. The first is by duplicating the data 
and subsequently sending each copy through different paths 
(Fig. 2(a)). The second is by breaking down the data and 
subsequently distributing parts of the original data to multiple 
paths (Fig. 2(b)). Simulation results showed that network 
throughput could be improved. By using duplication mode, 
communication between two endpoints can be continued 
without interruption, though some packets are lost. On the 
other hand, this mode causes wasteful traffic and may build 
up congestion in the network. By using distribution mode, 
high throughput can be achieved during normal data 
transmission. 

considers both of modes as an alternative to perform quick 
and reliable retransmission. 
 
3. M/TCP: Protocol Description 
 
M/TCP provides improvement over the current TCP in aspect 
of reliability and throughput. Because a host running M/TCP 
implementation maintains parameters to independently probe 
network congestion of each path, data can be transmitted via 
multiple controlled paths. When congestion exists in a path, 
M/TCP can perform quick and reliable retransmission 
causing essential error recovery. The followings describe 
these mechanisms. 
 
3.1 Layer Structure 
To provide congestion control and flow control effectively, 
transport layer is divided into two sublayers. The lower 
sublayer uses services provided from IP and is responsible for 
congestion control and retransmission timer. The upper 
sublayer is responsible for flow control, re-sequencing and 
error recovery by means of obtaining information from the 
lower sublayer. 
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Figure 3: M/TCP Layer Structure 
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3.2 Multi-Route Option 
M/TCP utilizes the extra bytes available in the option field of 
the TCP header to contain necessary information for multi-
route connection control. 

 
 

 
 
 
 

Figure 4: Multi-Route Option 
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Figure 2: (a) Duplication Mode; (b) Distribution Mode 

 
These proposals motivate us to apply multi-path for 
improving reliability and performance of the Internet. M/TCP 
employs two data transmission modes mentioned above. For 
normal data transmission, distribution mode is used to 
achieve high throughput. For error recovery, M/TCP 
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2 Multi-route gateway can be implemented by extending functions of 
ipfilter-3.2.10 in FreeBSD 2.2.8R 

 

oute ID: Route ID informs the other end via which route the 
egment is transmitted. Before sending a segment to a lower 
ublayer, the upper sublayer assigns Route ID corresponding 
o the lower sublayer. As a result, when the segment arrives 
t the receiver, the receiver can distinguish each arrived 
egment by Route ID. 
eply Block:  The current TCP can check data that has been 
cknowledged by cumulative acknowledgment. It is difficult 
or M/TCP that is multi-route connection to utilize 
umulative acknowledgment due to differences of route’s 
haracteristics. Thus, Route ID Reply and Sequence Reply 
dentify Route ID and the first byte of segment that triggers 
he ACK. 
 



 
 
 
 
 
 
 
 

Figure 5: An example of Sending ACK 
 
Since Route ID Reply and Sequence Reply in an ACK inform 
the sender of the segment that triggers the ACK. The sender 
can determine data that has been received and then retransmit 
only the missing segments. 
 
3.4 Congestion Control 
3.4.1 Data Transmission Management 
The current TCP updates congestion window by using 
Sequence Number and Acknowledgement Number. But 
M/TCP is not able to calculate an amount of unacknowledged 
data of a particular route by using only Sequence Number and 
Acknowledgement Number. That is because the data sent via 
each route is not continuous. Thus, M/TCP maintains 
information lists of transmitted segments. One list is for one 
route. The information list contains the following three values 
of every segment: (1) Sequence Number of unacknowledged 
segments, ti_seq, (2) data length, ti_len, (3) the transmission 
time of data packet at the source, ti_time. By utilizing the list, 
delay time of every segment can be estimated. Besides, the 
sender can determine the amount of unacknowledged 
segments and update congestion window of each route. 

When a sender sends a segment, it will add ti_len, 
ti_seq and ti_time of the segment into the list as an entry. The 
list maintains the entry until an ACK containing Sequence 
Reply equals to ti_seq arrives.  

 
Table 1: M/TCP Transmission Control Parameters 

Variables Meaning 

snd_una The first byte of unacknowledged data 
that was sent by M/TCP 

snd_mnxt The first byte of the next data that will 
be sent by M/TCP 

r_wnd Receiver’s advertised window 

snd_nxt[x] The first byte of the next data that will 
be sent via route x 

snd_cwnd[x] Congestion window of route x 
snd_ssthresh[x] Slow start threshold of route x 

snd_muna[x] A number of unacknowledged data 
bytes that were sent via route x 
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data bytes allowed by flow control is calculated by equation 
(3). 

DATA(SEQ=100), r_id=0

ACK (AC K=98), r_id=1

sq_reply=100, rt_reply=0

Sender Receiver
 

      snd_una ≤ snd_nxt[x] ≤ snd_mnxt (1)  
 
        snd_mnxt  <  snd_una + r_wnd  (2) 
 

     wnd_flow=snd_una+r_wnd-snd_mnxt (3) 
 
Whenever an ACK arrives and acknowledges new data, the 
sender updates snd_una and delete all of new acknowledged 
data from buffer. 
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Figure 7: An example of updating snd_nxt 

 
Fig. 7 shows an example of updating snd_nxt of route x, y 
and z. The sender determines snd_muna[x] by counting 
number of data remaining in the information list of route x. If 
snd_muna[x] is still less than snd_cwnd[x], the sender allows 
a new data segment to route x. 
 
3.4.2 Data Receiving Management 
Every lower sublayer sends segments received from IP layer 
to the upper sublayer. The upper sublayer has only one buffer 
to maintain data that will be delivered to the application layer. 
The receiver handles all received segments in the same way 
regardless of by which mode segments were transmitted. 
 

Table 2: M/TCP Receiving Control Parameters 
Variables Meaning 
rcv_wnd Receiving window 

rcv_nxt The first byte of data that the receiver 
expects to receive  

ti_seq Sequence Number of the arriving 
segment 

ti_len Data length of the arriving segment 
 

r_wnd After a segment arrives, the receiver investigates whether an 

 

Figure 6: Updating snd_mnxt 
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rriving segment should be put into the receiving buffer or 
hould be thrown away. 

.4.3 OWTT Measurement & RTO Calculation 
/TCP is multi-path connection. A data segment and the 

orresponding ACK are possibly transmitted via different 
aths. To assign Retransmission Timeout (RTO) for each 
ransmitting segment, One-Way-Trip Time (OWTT) 
easurement is needed to allow a sender to estimate delay 

ime of forward path and reverse path separately. OWTT 
easurement in [15] is used in M/TCP. Below is a brief 

escription of OWTT measurement in M/TCP. 



 Whenever the sender receives an ACK containing 
Route ID Reply = x and Route ID = y, the time interval of 
forward path via route x, OWTTxf, and the time interval of 
reverse path via route y, OWTTyr, are calculated by 
 

          Err = Mxy – (OWTTxf + OWTTyr) (4) 
 
     Mxf  OWTTxf + Err/2  (5) 
 
     Myr  OWTTyr + Err/2  (6) 

where Mxy is the measured time interval between sending a 
particular sequence number via route x and receiving the 
corresponding ACK via route y. Mxy can be calculated from 
time that was recorded in information list at the sender. Mxf is 
the measured time interval of forward path via route x and 
Myr is the measured time interval of reverse path via route y.  
 
Based on the original TCP specification [12], OWTTxf and 
OWTTyr are updated and RTO is determined as follows. 
 
           OWTTxf  αOWTTxf + (1-α)Mxf (7) 

 
       OWTTyr  αOWTTyr + (1-α)Myr (8) 

 
For Distribution Mode: 

        RTOx = (OWTTxf+max(OWTTr))β (9) 
 
For Duplication Mode: 

    RTOx = (max(OWTTf)+max(OWTTr))β     (10) 
where α is a smoothing factor, β is a delay variance factor, 
RTOx is retransmission timeout value of the next segment 
transmitted via route x, max(OWTTf) is the maximum value 
among the time intervals of forward path and max(OWTTr) is 
the maximum value among the time intervals of reverse path. 
 
For distribution mode, max(OWTTr) is used because the 
sender cannot expect via which route the corresponding ACK 
will be sent back. Similarly, max(OWTTf) is used for 
duplication mode because the sender cannot expect via which 
route the data will arrive at the receiver. Moreover, it would 
be better to overestimate than underestimate the RTT, which 
may lead to unnecessary retransmissions. 
 By using the OWTT measurement mentioned 
above, the endpoints can deal with communication even if a 
data segment and the corresponding ACK are transmitted via 
different paths. 
 
3.5 Error Recovery 
Current TCP implementations have two possible mechanisms 
for detecting a packet loss; fast retransmit algorithm [5] and 
retransmission timeout [13]. M/TCP error recovery is 
designed based on these mechanisms but provides 
improvements by using merit of multi-path. 
 
3.5.1 Fast Retransmit Algorithm 
A TCP sender generally retransmits a lost packet more 
frequently with fast retransmit, inferring a packet loss after 
three duplicate ACKs have been received. Similarly, an 
M/TCP sender detects a packet loss and subsequently 
performs a retransmission when three duplicate ACKs of a 
particular route have been received. What is different from 
TCP is retransmission mode. M/TCP employs duplication 
mode, duplicating the missing segment and sending each 

copy through all paths satisfying equation (11), whereby 
quick and reliable retransmission can be desirable. 

 
wnd_cong[i] ≥ size of the missing segment (11) 

where wnd_cong[i] is number of data bytes allowed by 
congestion control of route i, which equals to snd_cwnd[i]-
snd_muna[i]. 
 
3.5.2 Retransmission Timeout 
Every lower sublayer manages its retransmission timer. When 
a retransmit timer of a lower sublayer expires, the upper 
sublayer performs retransmission of unACKed data in the 
information list. Since there is no data flow along the lower 
sublayer experiencing timeout, the upper sublayer will 
distribute the missing segments to other lower sublayers that 
satisfy equation (11). 
 
3.6 Robust ACK Reply mechanisms 
There are three ways for a receiver to transmit an ACK when 
it receives data segments.  
1. Immediate ACK: an M/TCP receiver transmits an ACK 
immediately upon receiving a data segment. The receiver 
randomly sends the ACK via one of all paths. Sequence Reply 
in an ACK represents the first bytes of the segment that 
triggers the ACK. 
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Figure 8: Immediate ACK 
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 Table 3: Evaluation Condition 
3. Duplicated & Delayed ACK: an M/TCP receiver does not 
send an ACK the instant it receives data. Instead, it will wait 
and send ACK along with the next data going to the same 
direction. The receiver transmits an ACK for every other data 
segments via more than one path. In this case, the ACK 
contains Reply blocks consisting of Route ID Reply and 
Sequence Reply corresponding to all arrived segments. As 
shown in Fig. 10, since three segments have arrived at the 
receiver during delay time, the receiver transmits an ACK 
containing three Reply blocks via two paths. 

ACK reply policy 
Immediate ACK 
Duplicated ACK 
Duplicated & Delayed ACK 

Packet size 1 Kbytes 
Slow start threshold 20 packets 
Receiver’s window 20 packets 
FTP transfer 2 Mbytes 
Error model (EM) on 
Forward Path (FP) 

Packet error rate (%): 2 

EM on Reverse Path (RP)  Packet error rate (%): 0,5,10,13 
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We investigate performance of M/TCP with the new ACK 
schemes (Duplicated ACK and Duplicated&Delayed ACK) 
compared to TCP Reno and M/TCP with immediate ACK. 
We show simulation results of M/TCP in the presence of 
error model on both forward and reverse paths. 
 
 
 
 
 
 
 

2  M b
2 0  m s

1  M b
1 0  m s

5  M b
6  m s

1  M b
1 0  m s

M /T C P
R e c e iv e r

M /T C P
S e n d e r

R o u te r

R o u te r

EM  on FP

EM  on FPEM  on RP

EM  on RP

Figure 10: Duplicated & Delayed ACK Figure 12: Basic configuration for M/TCP with EM on both 
forward and reverse paths 

. Performance Results  
 

erformance studies of M/TCP are conducted using network 
imulator NS-2 [14]. A basic configuration with a single 
ource, a single destination and two transmission paths are 
onsidered for M/TCP. The simulator contains 
mplementations of Agent and TCP Reno. First, two network 
nterfaces are implemented by extending the existing Agent 
ource code. M/TCP is implemented by modifying the 
xisting TCP-Reno source code to include congestion control, 
rror recovery and the new ACK schemes. The M/TCP 
ender transmits data segments by means of round-robin 
anner as shown in Fig. 11. 

 
 
 

Figure 13: Simulation Model for TCP Reno 
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For each evaluation condition, we repeated simulation 10 
times and averaged throughput. Table 4 shows comparison of 
the throughput provided by protocol agents. Fig. 14 shows a 
simulation result of sequence number sent by protocol agents 
with 2% packet error rate on forward path and 5% packet 
error rate on reverse path. Fig. 15 shows the growth of 
Reno’s congestion window. Fig. 16, 17 and 18 show the 
growth of congestion window of M/TCP with immediate 
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 Figure 11: Transmission Flowchart 
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CK, duplicated ACK and duplicated&delayed ACK 
espectively. 

Table 4: Comparison of Throughput (Mbps) 
EM on RP 0% 5% 10% 13% 

TCP Reno 0.80 0.78 0.76 0.75 
M/TCP 

(Immediate ACK) 1.35 1.29 1.23 1.22 

Improvement3 69% 66% 62% 63% 
M/TCP 

(Duplicated ACK) 1.40 1.39 1.43 1.39 

Improvement 75% 79% 88% 86% 
M/TCP 

Duplicated&Delayed) 1.38 1.44 1.39 1.37 

Improvement 73% 84% 83% 83% 

                                                
 Calculated by = M/TCP  - 1 

            Reno 
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Figure 14: Sequence Number sent by Protocol Agents 
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Figure 15: Congestion Window of TCP Reno 
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Figure 16: Congestion Window of M/TCP (Immediate ACK) 
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Figure 17: Congestion Window of M/TCP (Duplicated ACK) 
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Figure 18: Congestion Window of M/TCP 

(Duplicated & Delayed ACK) 
 
 

 
As can be seen from Table 4, when EM on RP exists, 
throughput of M/TCP with duplicated ACK and M/TCP with 
duplicated&delayed ACK does not much suffer compared to 
throughput of TCP Reno and M/TCP with Immediate ACK. 
One possible reason is that M/TCP with duplicated ACK and 
M/TCP with duplicated&delayed ACK transmits an ACK via 
both routes. Even if a route becomes congested and drops 
packets, the ACK can arrive via the other route. M/TCP with 
immediate ACK suffers from EM on RP because it randomly 
sends an ACK via one of both routes, which may lead to 
unnecessary retransmission if the ACK gets lost. 

Furthermore, it appears that M/TCP achieves at 
least 62% improvement in throughput compared to TCP 
Reno. The reason is that M/TCP can make better use of link 
capacity in both routes. For example, in simulation of M/TCP 
with immediate ACK at t ≈ 3.6 s, M/TCP can transmit data 
via Route #1 even though Route #0 experiences timeout. TCP 
Reno’s throughput suffers from timeout because it falls into 

slow start and can only gradually retransmit lost segments 
starting from one segment. 
 In table 4, the throughput values of TCP Reno with 
0% packet error rate are a little bit different from those with 
13% packet error rate. The reason is that the reduction in 
throughput results from the increase of packet loss rate on 
ACK path only. In all simulation, packet loss rate on forward 
path (data path) was constantly set to 2%. 0% and 13% in 
table 4 are the percentages of packet loss rate on ACK path. 
Moreover, the TCP receiver sends an ACK immediately upon 
the receipt of a data segment. Thus, the TCP sender 
frequently gets a new ACK even though the previous new 
ACK gets lost. 
 
5. Conclusion 
 
We introduced M/TCP and its robust ACK schemes; 
duplicated ACK and duplicated&delayed ACK. The protocol 

  



  

can be implemented as a TCP option called multi-route 
option. M/TCP makes use of the option to distinguish routes 
of the connection. Each lower sublayer maintains parameters 
for probing its network congestion. The protocol uses OWTT 
measurement to estimate delay time of forward path and 
reverse path separately. Then, calculate RTO values. The 
OWTT measurement does not require clock synchronization 
between two hosts because OWTT values are calculated from 
time recorded at the sender. By using OWTT measurement 
and multi-route option, the endpoints can deal with 
congestion control of each path. Therefore, a data segment 
and the corresponding ACK can be transmitted via different 
paths. 

Simulation results showed that M/TCP with new 
ACK schemes could achieve much higher throughput than 
TCP Reno and M/TCP with the conventional immediate 
ACK scheme. In simulation with error model on reverse path, 
throughput of M/TCP with the new ACK schemes did not 
much suffer whereas throughput of M/TCP with immediate 
ACK relatively decreased. One possible explanation could be 
that our protocol with the new ACK schemes successfully 
provides robust ACK reply mechanisms by using duplication 
mode, duplicating an ACK and subsequently sending each 
copy to different paths, whereby an ACK can quickly and 
reliably arrive at the other end. This duplication mechanism 
cannot be implemented in TCP. Furthermore, M/TCP 
provides an effective error recovery. When fast retransmit 
algorithms invoke, the sender employs duplication mode so 
that the missing segment can be expected to quickly and 
reliably arrive at the other end by the first retransmission. 
When a retransmit timer of a route expires, the sender can use 
other routes not experiencing timeout for retransmission.  

These findings lead support to the conclusion that 
our protocol with the new ACK schemes is very promising 
and behaves as an efficient transport protocol. Besides, 
because of its TCP-based congestion control, M/TCP 
performs TCP-friendly congestion control. Our current work 
focuses on evaluating its coexistence with other TCP 
implementations. To do so, many TCP connections should 
exist on both forward and reverse paths, and simulation 
model may need to be changed.  
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