
Supporting Multiple Transport Protocols
in a CORBA System

Tatsuo Nakajima
Department of Information and Computer Science

School of Science and Engineering
Waseda University

3-4-1 Ookubo Shinjuku Tokyo 169-8555, JAPAN

Abstract

This paper reports supporting dynamic transport se-
lection in omniORB2, which is a CORBA 2.0 compli-
ant CORBA system that has been developed at AT&T
Laboratories, Cambridge. We describe our design and
implementation of supporting dynamic transport proto-
col selection in our system, and some initial experiments
with the system. In our approach, IIOP can be selected
for ensuring interoperability between applications. Thus,
applications adopting our system can communicate with
those adopting other CORBA systems, which run on the
Internet environment. On the other hand, an application
can select more suitable transport protocols for improv-
ing its performance or ensuring its real-time constraints
if a server also supports the same transport protocol ac-
cording to the characteristic of the application.

1 Introduction

CORBA[11] has became a popular middleware for
building large and complex distributed applications.
CORBA enables programmers to build applications
without taking into account low level details of under-
lying communication infrastructures. Therefore, the de-
velopment speed of distributed applications is dramati-
cally increased, and application programs become more
interoperable and portable. CORBA is now adopted in
a lot of research prototypes and commercial products of
distributed applications such as network management,
telecommunication, and on-line transaction processing.
However, most current implementations of CORBA

provide only IIOP(Internet Inter-ORB Protocol) that
adopts TCP as an underlying transport protocol for en-
suring interoperability among different CORBA prod-
ucts. However, since the CORBA specification is in-
dependent of underlying communication infrastructures,
more appropriate transport protocols can be chosen for

1 † The research described in the paper was done while the
author was visiting at AT&T Laboratories, Cambridge,
and Laboratory for Communication Engineering of Uni-
versity of Cambridge.

respective applications if they are available. If a CORBA
system is able to support multiple transport protocols si-
multaneously, and an application program can select the
most appropriate one among them, advanced features of
respective transport protocols such as bandwidth reser-
vation can be available from the program directly.
A large number of computers may be connected via

low bandwidth networks in future computing environ-
ments. Also, various consumer devices such as TV and
Hi-Fi audio systems will be connected via high band-
width networks. In such environments, the most ade-
quate transport protocol might be changed according to
available communication infrastructures and the charac-
teristics of applications.
Future computing environments make is possible that

a lot of context information can be retrieved from various
sensors embedded in our surrounding environments[8].
An application program should be migrated among vari-
ous types of computers according to its user’s location in-
formation for achieving better performance[18, 19]. Also,
an application might be controlled by any devices near
its user. Thus, the application needs to support various
types of input/output devices that manage the interac-
tion with the user. For example, a display device near
from a user will display a control panel and the panel
transfers events from the user to his/her application[25].
Also, in future network environments, a part of an ap-
plication can be carried with a packet, and a router and
a switch will execute it for improving an application’s
performance[1].
The above visions require ubiquitous middleware like

CORBA for building distributed applications that can be
executed on various types of platforms. In order to real-
ize the goal, CORBA should support multiple transport
protocols simultaneously, and these protocols should be
dynamically selected since various types of communica-
tion infrastructures require different transport protocols
for making the benefits of the infrastructures maximum.
This paper reports the support of multiple transport

protocols and the dynamic selection of the protocols im-
plemented in omniORB2, which is a CORBA 2.0 compli-
ant CORBA system that has been developed at AT&T
Laboratories, Cambridge. Our system has extended



the standard interface for controlling transport proto-
cols and provides mechanisms for the dynamic selection
of the protocols. The current implementation supports
three transport protocols, IIOP, IIOP over SSL, and
GIOP over ATM, where IIOP over SSL is to transmit
GIOP(General Inter-ORB Protocol) messages over SSL,
and GIOP over ATM is to transmit GIOP messages over
a simple reliable transport protocol on native ATM.

2 Why IIOP is not Enough ?

In this section, we consider four situations where IIOP
is not suitable for building various types of distributed
applications. The first situation occurs when using a
connection oriented network protocol below the IP layer.
For example, IP over ATM emulates the IP datagram
service by creating a new ATM connection automati-
cally when an IP packet is transmitted. The approach
makes packet transmission latency unpredictable since
the connection setup of ATM is completely hidden from
the IP layer. Also, the approach does not allow the traf-
fic management features of ATM to be used by appli-
cations. A lot of future network systems such as IEEE
1394’s isochronous mode which is suitable for multimedia
communication will support bandwidth management for
transmitting timing critical data. Therefore, IIOP is not
enough to support advanced real-time network systems.
The second situation occurs when using a network

protocol that does not ensure the assumption for pro-
cessing the TCP protocol. For example, Piconet[2] is
a low power and low bandwidth ad-hoc network, which
can be embedded in a lot of small devices in our sur-
rounding world such as PDAs, cellular phones and mi-
crowave ovens. In this environment, IIOP may not be
adequate for controlling such devices that are connected
via Piconet, since TCP is not an appropriate protocol
for reducing energy consumption.
The third situation occurs when requiring to support

secure transport protocols. Practical business applica-
tions need to support security for ensuring to protect
secrets of users. However, traditional approaches require
to modify existing applications for supporting security.
The support of secure transport protocols should take
into account the reusability of existing applications, but
IIOP provides no mechanism for supporting security.
The last situation occurs when using a network sys-

tem that does not provide TCP/IP. For example, clus-
tered computers require ultra high performance networks
since communication performance is very important for
increasing application’s performance. In such networks,
a network interface device is mapped into each applica-
tion’s address space, and operating systems are bypassed
when transmitting and receiving data[16, 21]. In this
case, a lightweight transport protocol needs to be imple-
mented at user-level. This means that the networks do
not allow the overhead of the TCP protocol. Thus, TCP

is also inappropriate as a transport protocol for clustered
computers.

3 Design Issues

In this section, we describe three issues for supporting
dynamic transport protocol selection. The first issue is
how to specify a transport selection policy. The second
issue is the granularity of the transport selection policy.
The last issue is how an error is handled when specified
transport protocol cannot be available.

3.1 Transport Selection Policy

The first issue is how to select a suitable transport
protocol among currently available protocols. We dis-
cuss two choices for the issue. In the first choice, a
system provides several different policies for selecting a
transport protocol. Programmers select suitable policies
among policies provided by the system for their applica-
tions. In the second choice, a system allows programmers
to implement appropriate transport selection policies for
their applications.
The first choice makes a system more stable, since

there is no possibility for adding incorrect policies by a
programmer. However, the selection policy will depend
on the characteristics of an application and a commu-
nication platform. For example, a programmer wants
to use a special tool monitoring traffic on networks to
select the most suitable protocol, but the tool may be
available on only a special platform. The second choice
enables programmers to create selection policies for their
applications, and the applications can install the policies
for respective objects. Our system adopts the second
choice for achieving higher flexibility.

3.2 Granularity of Transport Selection Pol-
icy

The next issue is the granularity for specifying explicit
binding. In this paper, we discuss two choices. The first
choice is to specify a QOS parameter for a client. This
means that the specified QOS is applied for all objects
that are invoked from the client. The choice makes the
implementation is very simple and the effect of introduc-
ing explicit binding primitives minimum. However, the
requirements of an application may be changed for ac-
cessing respective objects. The second choice is to allow
a programmer to specify a QOS parameter for each ob-
ject. Thus, our system chooses the second choice, since
we believe that flexibility is more important for support-
ing multiple transport protocols. We also provide the
first choice by allows a user to specify an option when a
program is started.



3.3 Handling Connection Setup Error

The issue described in the section is an error handling
when the currently selected transport protocol cannot
be used. The situation occurs when both a client and a
server support the protocol, but they cannot communica-
tion with each other by using the protocol. We can con-
sider two policies for solving the issue. The first solution
is to automatically change the currently selected trans-
port protocol to the protocol that can be actually avail-
able now. In the second solution, the run-time throws an
exception when the currently selected transport protocol
is not available. Both solutions are desirable according
to an application’s requirements. Our system provides
two classes for transport selection policies. The first class
implements the first policy, and the second class imple-
ments the second policy. When a programmer defines a
new class implementing his own transport protocol se-
lection policy, the class should inherit one of the two
classes.

4 Dynamic Transport Protocol Selection
in omniORB2

In this section, we describe a brief overview of
CORBA and omniORB2, and present how our extended
interface is used by showing some fragments of programs.

4.1 CORBA and omniORB2

CORBA provides standard programming interface for
constructing distributed applications. A client accesses
an object in a server through a proxy object in the
client’s address space. A server has object adaptors that
deliver requests from a client to a target object. The
current CORBA specification[11] defines a basic archi-
tecture, interface definition language(IDL), application
programming interface, and protocols for ensuring in-
teroperability among different CORBA products. The
specification also contains language mapping for several
major programming languages. Thus, applications writ-
ten by different programming languages can be commu-
nicated with each other.
Although CORBA is carefully designed for satisfying

various requirements of a wide range of distributed ap-
plications, the current specification has some limitations
for supporting all types of distributed applications. In
fact, there are a lot of ongoing research projects that at-
tempt to remove the limitations of the current CORBA
specification. DIMMA[6], ReTINA[5], and GOPI[4] have
extended CORBA for supporting to build continuous
media applications. The IDLs of these systems are ex-
tended to support stream interface for delivering au-
dio and video streams. TAO[23] has been enhanced
for supporting distributed real-time computing, which
focuses on avoiding priority inversion in the CORBA

run-time. Also, TAO extends the CORBA IDL for
supporting QOS parameters such as period and worst
case execution time, which are required to guarantee
all timing constraints of applications. Electra[17] en-
ables programmers to build fault tolerant applications
with CORBA. Reflective CORBA[3] provides customiz-
able CORBA run-time, which allows programmers to re-
place some parts of the run-time according to the char-
acteristics of their applications.
OmniORB21 , which provides CORBA 2.0 C++map-

ping, especially focuses on achieving high performance,
since a lot of distributed applications do not tolerate
large overhead caused by most existing CORBA sys-
tems. The high performance CORBA makes it possi-
ble that a lot of performance critical applications can
adopt CORBA. This makes applications more interoper-
able and reusable.
Currently, omniORB2 has been used in several

projects at AT&T Laboratories, Cambridge. For ex-
ample, it is used as a communication infrastructure
for controlling the Virtual Network Computer(VNC)[22]
by using the Active Badge System. Also, it is used
for the SPIRIT middleware[25] for building fine-grained
location-aware applications that use Active Bat[24].
Also, some companies and universities have been adopt-
ing omniORB2 for building their research prototypes
and products, and some research groups have imple-
mented the COS event service[14] and the COS trans-
action service[15] on omniORB2.

4.2 Dynamic Transport Selection in Client

In this section, we describe how a customized trans-
port selection policy is created. In the current imple-
mentation, the default transport selection policy does
not change the current transport protocol. Also, when
the current transport protocol is rejected by a server, the
GIOP client engine throws an exception to a client pro-
gram. In this case, it may change the transport protocol
by calling the rebind method explicitly or terminate it-
self. If the policy is not suitable for an application, it
needs to define its own transport selection policy.
The new policy can be installed by calling the set-

TransportSelectionPolicy method which is defined in the
omniQOS class, and the policy should be a subclass of
the the SelectionPolicy class. Our system allows a pro-
gram to select different transport selection policy for re-
spective object references.
The following is a sample client program that specifies

an application specific transport selection policy. The
program creates an instance of the DynamicSelection-
Policy class, which is described later, and installs the
policy for invoking an Echo object(Line 8). Before in-
voking the echoString method in the Echo object, the

1 OmniORB2 is publicly available under GNU public licenses.
More information is available from
http://www.uk.research.att.com/omniORB/.

http://www.uk.research.att.com/omniORB/


program calls a policy specific method of the Dynamic-
SelectionPolicy class for specifying the preference of the
application(Line 10).

1 void
2 hello(CORBA::Object_ptr obj, hint_t hint)
3 {
4 DynamicSelectionPolicy policy;
5
6 Echo_var e = Echo::_narrow(obj);
7
8 omniQOS::setTransportSelectionPolicy(e, &policy);
9
10 policy.setTransportHint(hint);
11
12 .....
13 dest = e->echoString(src);
14 .....
15 }

The omniQOS class which is provided by our system
defines several methods for managing transport proto-
cols. When a transport selection policy object is not in-
stalled, the current transport protocol can be explicitly
changed by invoking the rebind method. The method re-
turns a new object reference which a specified transport
protocol is bound to. If a program uses a returned ob-
ject reference for invoking a method in a target object,
the specified transport protocol transmits requests and
replies to the target object. Also, the omniQOS class
provides the openConnection method which opens a new
connection explicitly. In [20], we describe how to use
these primitives in details.

4.3 Transport Selection Policy

The programmer needs to define two methods for
defining a new transport selection policy when imple-
menting a subclass of the SelectionPolicy class. The first
method, isStaticPolicy determines the behavior when the
currently selected transport protocol is not available.
When the method returns “true” and the current trans-
port protocol is not available, the run-time throws an
exception. On the other hand, if the method returns
“false” and the current transport protocol is unavail-
able, the run-time changes the current transport proto-
col to IIOP automatically, and call the changeTransport
method for notifying the change to an application. The
second method, runSelectionPolicy is called whenever a
remote object is invoked. The method checks whether
the current transport protocol is suitable or not, and
changes the protocol if there is a more appropriate pro-
tocol.
A selected transport protocol determined by the runS-

electionPolicymethod may be changed according to QOS
parameters which are provided by policy specific meth-
ods defined in a transport protocol selection policy ob-
ject. These methods allow us to specify QOS parameters
that enable an application to satisfy the requirements for
invoking a method of a remote object.

In the current implementation, we provide three
transport selection policy classes. The first class is Stat-
icSelectionPolicy, which is a default policy in the current
implementation. When the policy is selected, the run-
time throws an exception when the current transport
protocol is not available. Also, the policy have no policy
specific method, and runSelectionPolicy does not change
the current transport protocol. The second class is Ex-
plicitSelectionPolicy. The policy automatically changes
the current transport protocol to IIOP when the current
transport protocol is not available. The policy provides
the changeTransport method that allows a programmer
to change the current transport protocol explicitly with-
out using the rebindmethod. The last class is DynamicS-
electionPolicy. When the policy is adopted, the run-time
changes the current transport protocol to IIOP when the
current transport protocol is not available. The policy
provides a method for specifying only a simple QOS pa-
rameter, but a more complex policy which allows us to
specify a more complete QOS parameter and mechanism
can be implemented by inheriting these classes.
The following class definition shows the signature of

the DynamicSelectionPolicy class. The class allows the
run-time to change the current transport protocol when
a server rejects the protocol or the protocol is not avail-
able at a client since the isStaticPolicy method returns
“false”. Also, the class provides the setTransportHint
method for notifying an application’s preference to the
policy object. The method has one argument whose
value is either HighThroughput or LowThroughput. If
HighThroughput is specified, a system selects a transport
protocol that can transmit a large amount of data. On
the other hand, if LowThroughput is specified, a trans-
port protocol that can transmit a small request with the
fastest latency will be selected.

1 typedef enum { HighThroughput,
2 LowThroughput } hint_t;
3
4 class DynamicSelectionPolicy
5 : public SelectionPolicy {
6
7 public:
8 virtual void runSelectionPolicy();
9 virtual CORBA::Boolean isStaticPolicy()
10 {
11 return false;
12 }
13
14 void setTransportHint(hint_t hint);
15 };

The following program shows the body of the Dynam-
icSelectionPolicy class. The code is simplified for show-
ing only essential points. In the implementation, if High-
Throughput is selected, the current transport protocol is
changed to GIOP over ATM(line 9). Also, LowThrough-
put is chosen, the program checks whether there is a
currently opened ATM connection for transmitting a re-



quest(line 17). If it is available, GIOP over ATM is se-
lected(line 19). Otherwise, IIOP is selected(line 21).

1 void
2 DynamicSelectionPolicy::runSelectionPolicy()
3 {
4 ConnectionState *cs;
5
6 switch(transport_hint) {
7 case HighThroughput:
8 if(getConnectionType() != TRANS_ATM) {
9 changeCurrentTransport(TRANS_ATM);
10 }
11
12 break;
13
14 case LowThroughput:
15 cs = getConnectionState(TRANS_ATM);
16
17 if(getConnectionControl()
18 ->getConnectionStatus()) {
19 changeCurrentTransport(TRANS_ATM);
20 } else {
21 changeCurrentTransport(TRANS_IIOP);
22 }
23
24 deleteConnectionState(cs);
25
26 break;
27 }
28 }
29
30 void
31 DynamicSelectionPolicy::setTransportHint
32 (hint_t hint)
33 {
34 transport_hint = hint;
35 }

4.4 Supporting Multiple Transport Proto-
col in Server

The following server program supports both IIOP and
GIOP over ATM for receiving invocations to the Echo
object. In line 4, ORB is initialized, and BOA(Basic
Object Adaptor) is initialized in line 6.
The atmContext class is initialized in line 9. The class

is a subclass of the TransportContext class, which is used
for initializing the ATM protocol module. After the
initialization, the server can accept ATM connections.
Since the atmContext class is the singleton class, the get-
Contextmethod in the atmContext class returns a unique
instance of the class. In this example, the server receives
both IIOP and GIOP over ATM. In line 13-14, an in-
stance of the MyConnectionInterceptorFactoryForATM
class is created and installed. The class is a subclass of
the ConnectionInterceptorFactory class, which contains
the createmethod for creating a new connection intercep-
tor object. The method creates an instance of the My-
ConnectionInterceptorForATM class, which defines the
default behavior for validating the setup of ATM con-

nections whenever the program accepts a new ATM con-
nection. The MyConnectionInterceptorForATM class is
a subclass of the ConnectionInterceptor class that defines
methods invoked before and after opening a transport
connection.
In line 16, an instance of the Echo i class is created,

then it is installed in the BOA in line 17. In line 19,
the server enters into an event loop that waits for the
acceptance of the setup requests of both TCP and ATM
connections.

1 int
2 main(int argc, char **argv)
3 {
4 CORBA::ORB_ptr orb = CORBA::ORB_init(argc,
5 argv, "omniORB2");
6 CORBA::BOA_ptr boa = orb->BOA_init(argc,
7 argv, "omniORB2_BOA");
8
9 atmContext::initContext(argc, argv);
10 atmContext *atm_context
11 = atmContext::getContext();
12
13 atm_context->setConnectionInterceptorFactory(
14 new MyConnectionInterceptorFactoryForATM());
15
16 Echo_i *myobj = new Echo_i();
17 myobj->_obj_is_ready(boa);
18 .....
19 boa->impl_is_ready();
20 .....
21 }

The following program shows the definition of the af-
terAccept method contained in the MyConnectionInter-
ceptorForATM class. The method is invoked after a new
ATM connection setup request is received in the server
program. If the method returns “Reject”, a client pro-
gram will catch an exception.
In line 7, the current bandwidth of the newly accepted

connection is retrieved. If the bandwidth is greater
than 1000(1Mbps) or equals 0(This means that the client
opens a ATM connection by the UBR mode.), the server
program notifies to the run-time for reducing the band-
width to 1Mbps. Otherwise, the ATM connection setup
request is accepted and method invocations will be re-
ceived. The ATMConnectionState class provides several
methods for controlling ATM networks. In our system,
each transport protocol provides a class that contains
several methods for controlling the protocol. In [20], we
describe how to use the class in details.

1 userRequest_t
2 MyConnectionInterceptorForATM
3 ::afterAccept(ConnectionState& cs)
4 {
5 ATMConnectionState& atm_cs
6 = (ATMConnectionState&)cs;
7 CORBA::ULong bandwidth = atm_cs.getBandwidth();
8
9 if((bandwidth > 1000) || (bandwidth == 0)) {



10 cout << ‘‘The current bandwidth
11 is reduced to 1000 kbps’’ << endl;
12 atm_cs.setConnectionInfo(ATM_REDUCE_REQUEST,
13 1000);
14 } else {
15 cout << ‘‘The current bandwidth
16 can be acceptable’’ << endl;
17 }
18
19 return Accept;
20 }

5 Supporting Multiple Transport Proto-
cols

In this section, we describe how multiple transport
protocols are supported in our system. First, we present
how a server exports information for multiple transport
protocols. Then, we show how a client program checks
the availability of a specified transport protocol between
the client program and a server program. Lastly, we
describe how a server delivers a notification to a client
when the server knows that the client can use a more
suitable transport protocol.

5.1 Exporting Transport Information

The current implementation encodes information
about IIOP over SSL and GIOP over ATM in
the tagged components of the IIOP profile in an
IOR(Interoperable Object Reference). We adopt the
TAG SSL SEC TRANS tag defined by OMG for IIOP
over SSL[12]. For GIOP over ATM, we define a new
tagged component that contains an ATM address, a port
number, and the expected bandwidth of a server. The
expected bandwidth information is used for negotiat-
ing bandwidth between a client and a server. The ap-
proach makes the implementation easy, but it requires
that IIOP should be always implemented on all plat-
forms. In future computing environments, small com-
puters such as consumer devices and embedded comput-
ers may not implement TCP/IP for making the system
size small. Thus, the future implementation will allow
a server to select IOR encoding strategies of each trans-
port protocol whether it is encoded as a separated profile
or in the IIOP profile.

5.2 Transport Selection at Client Side

In our scheme, a client program can know transport
protocols supported by a server program. However, the
scheme does not ensure that the client program can com-
municate with the server programs via any protocols
encoded in an IOR. The problem can be solved by us-
ing a mechanism for knowing the topologies of networks
between the client and the server, but such a mecha-
nism cannot be available for all network infrastructures,

and the mechanism is significantly difficult to be imple-
mented. Our system assumes that a network topology
between a client and a server is unknown, and we adopt a
simple policy that a client removes the currently selected
transport protocol among available protocols when its
connection setup causes an error.

5.3 Transport Selection at Server Side

The server may reject to use the current transport
protocol that a client issues a method invocation request.
For example, a server must control that a client does not
consume too much bandwidth. Also, a server should de-
liver a notification to a client when the server knows that
the client can use a more suitable transport protocol. For
example, a secure protocol may not be required when
both a client and a server reside in a trusted network
domain. Our system uses a location forward message for
notifying that a more suitable transport protocol can be
available to a client. For example, if a server decides
that a client should not use GIOP over ATM, the server
returns an IOR that does not contain information about
ATM. However, the mechanism is very heavy for check-
ing every request. Thus, we decide to execute the proce-
dure only when the Locate Request message is received,
which is used for checking whether an object exists in a
server. Since the request is transmitted only before the
first method invocation to the object, the approach does
not degrade the performance of an application.

6 Performance Evaluation and Discus-
sion

The section presents the performance evaluation of
the current implementation. Also, we describe several
experiments with our current prototype.

6.1 Performance Evaluation

The result as shown in Table 1 presents the round-
trip latency of a null string echo. The evaluation was
measured on two Sun 4 SS4 machines on which Solaris
5.5.1 is running. The two machines are connected via
155 Mbps ATM network. The machines have the Fore
SBA-200 SBus ATM card. The implementation of GIOP
over ATM uses the XTI interface for the Fore ATM card
in order to access ATM directly. To measure the perfor-
mance of IIOP, Classical IP over ATM is used to provide
TCP/IP connectivity. The result shows that the con-
nection setup overhead of GIOP over ATM. Also, the
difference between GIOP over ATM(with transport) and
GIOP over ATM(without transport) shows the overhead
of our simple ATM transport protocol that provides re-
liable packet transmission. The result shows that con-
nection setup takes a long time. Thus, an application
that requires predictable latency should use the open-
Connection and closeConnection method explicitly. The



approach is especially useful to support distributed real-
time systems. Traditional CORBA systems that do not
provide the explicit binding model and explicit connec-
tion management cannot support real-time applications
since a programmer cannot control the CORBA run-time
for predictable method invocations.

6.2 Discussion

In this section, we describe two experiences with our
current prototype. The first experience is about auto-
matic transport selection provided by a transport selec-
tion policy. The second experience is about dependencies
among protocols when dynamic selection is adopted.

6.2.1 Automatic Transport Selection

Our system provides two ways for supporting explicit
binding. The first way is to use the rebind method de-
scribed in [20], and the second way to use policy spe-
cific methods provided by transport selection policy ob-
jects. The first way specifies the actual transport proto-
col name as an argument, and the returned object refer-
ence is bound to the specified protocol. The reference can
be passed as an argument in a method call since the ap-
proach does not violate the semantics of CORBA. Also,
the object reference is strictly bound to a transport pro-
tocol. Thus, the semantics of the program is very clean.
On the other hand, the second way is more flexible. A
program can choose any abstraction levels for specify-
ing QOS parameters by creating a new transport selec-
tion policy class. However, the approach may change
the current transport protocol implicitly according to a
transport selection policy. Therefore, the method call la-
tency becomes unpredictable due to the implicit changes
of transport protocols. Also, respective transport pro-
tocols provide different semantics for reliability and er-
ror handling. Therefore, a programmer may confuse the
changes of the semantics if the changes occur without no-
tifying to an application. Moreover, a program needs to
prepare connection interceptor objects for all transport
protocols that are used in a transport selection policy
object. This means that our system assumes that a pro-
grammer needs to know protocols that may be chosen by
a transport section policy object.
If a transport selection policy object automatically se-

lects a suitable transport protocol, it is difficult to control
the setup and the shutdown of connections by a program
in an explicit way since a program does not know which
protocol is chosen before invoking a selection policy ob-
ject. For example, the connection setup latency of ATM
networks is very long. Thus, a connection should be
opened before invoking a target object if an application
has real-time constraints. We may need to introduce
a new primitive to open a connection before invoking
methods according to a transport selection policy.

6.2.2 Dependencies among Transport Protocols

The original architecture of omniORB2 does not consider
to support multiple transport protocols at the same time.
The implementation allows us to use a different protocol
by creating the instances of the rope and strand object
for the protocol at the initialization time. The approach
successfully supports multiple transport protocol easily.
Also, the approach does not make the size of the run-time
big, because only the rope and strand class that are cur-
rently used are linked in the run-time. Thus, when sup-
porting multiple transport protocols, a necessary rope
and strand object should be linked dynamically at the
first use. However, dynamic protocol selection creates
dependencies among protocols. The current implemen-
tation of the GIOP engine may call the methods of rope
and strand objects for respective protocols in order to
determine the most suitable protocol. This means that
all codes for transport protocols must be linked for dy-
namic selection. In future, we need to consider how to
make the dependencies minimum and the size of the run-
time small.
In a client program, different transport protocols need

to install respective connection interceptors, or a connec-
tion interceptor that can handle all protocols that may be
selected by a transport selection policy object is install
for respective transport protocols. The former approach
needs to define a new connection interceptor whenever a
transport selection policy object support a new transport
protocol. Also, the changeTransport method defined in
a connection interceptor needs to install an appropriate
connection interceptor object. If a programmer forgets
to install the connection interceptor, a connection setup
request may not be validated correctly. The later ap-
proach needs to modify the connection interceptor for
handling a new protocol.
The problem can be solved by abstracting informa-

tion about each transport protocol, but the approach
requires to map abstract information to concrete infor-
mation for each protocol. The solution is difficult to be
implemented, and it is not easy to implement efficiently.
The current solution is to install respective connection
interceptors for all transport protocols that are chosen
by transport selection policy objects. Therefore, the cur-
rent solutions requires that a programmer needs to know
all protocols that may be chosen by transport selection
policy objects, and a program should install an appro-
priate connection interceptor when the currently used
transport protocol is changed.

7 Conclusion

In this paper, we described the support of dynamic
transport selection in a CORBA system. Our approach
provides a transport selection policy object for each
proxy object. Our system is very flexible, since a pro-
grammer can select an appropriate abstraction level for



w/o Connection Setup w Connection Setup
IIOP 2.5 ms 13.27 ms
GIOP over ATM(with transport) 2.2 ms 88.80 ms
GIOP over ATM(without transport) 2.1 ms 88.80 ms

Table 1: Round Trip Time of Null String Echo

respective transport selection policy.

Acknowledgement

I would like to thank Sai-Lai Lo, who is a great om-
niORB2 developer. He always gives me a lot of sugges-
tions and helps the implementation of our system. Andy
Harter, Steve Pope, Pete Steggles, and Paul Webster’s
suggestions are very useful for the work. I especially
would like to thank Sai-Lai Lo and Steve Pope for read-
ing the draft of the paper and giving me a lot of use-
ful comments. Finally, I am grateful to Andy Hopper
for giving me a chance to stay at AT&T Laboratories,
Cambridge for 10 months.

References

[1] D.S. Alexander, W.A. Arbaugh, M.W. Hicks, P.
Kakkar, A.D. Keromytis, J.T. Moore, C.A. Gunter,
S.M. Nettles, and J.M. Smith, “The Switch-
Ware Active Network Architecture”, IEEE Net-
work, Vol.12, No.3, 1998.

[2] F. Bennett, D. Clarke, J.B. Evans, A. Hopper, A.
Jones and D. Leask, “Piconet - Embedded Mobile
Networking”, IEEE Personal Communications, Vol.
4, No. 5, 1997,

[3] G. Blair, G. Coulson, P. Robin and M. Papathomas,
“An Architecture for Next Generation Middleware”,
In the Proceedings of Middleware’98, 1998.

[4] G. Coulson and M. Clarke, “A Distributed Ob-
ject Platform Infrastructure for Multimedia Appli-
cations”, Computer Communications, Vol.21, No.9,
1998.

[5] F. Dang Tran, V. Perebaskine, J. Stefani, “Binding
and Streams: the ReTINA Approach”, In Proceed-
ings of the TINA’96 Conference, 1996.

[6] D.I. Donaldson, M.C. Faupel, R.J. Hayton, A.J.
Herbert, N.J. Howarth, A. Kramer, I.A. MacMillan,
D.J. Otway, S.W. Waterhouse, “DIMMA - A Multi-
Media ORB”, In Proceeding of the Middleware’98,
1998.

[7] S. Frolond, and J. Koistinen, “Quality of Service
Specification in Distributed Object Systems”, Dis-
tributed Systems Engineering Journal, Vol. 5, No.
4, 1998.

[8] A. Jones, “Sentient Computing”, A Seminar at
Computer Lab, University of Cambridge, 1998.

[9] J.P. Loyall, D.E. Bakkea, R.E. Schang, J.A. Zinky,
D.A. Karn, R.Vanegas, and K.R. Anderson, “QOS
Aspect Languages and Their Runtime Integration”,
In Proceedings of the Fourth Workshop on Lan-
guages, Compilers and Run-Time Systems for Scal-
able Computers, 1998.

[10] S. Lo, S. Pope, “The Implementation of a High Per-
formance ORB over Multiple Network Transports”,
Middleware’98, 1998.

[11] Common Object Request Broker Architecture and
Specification, Revision 2.2. Available electronically
via http://www.omg.org/.

[12] Secure Socket Layer/CORBA Security, OMG Doc-
ument, orbos/97-02-04, 1997.

[13] “omniORB2 Home Page”,
http://www.uk.research.att.com/omniORB/.

[14] “COS Event Service for omniORB2”,
http://www.uk.research.att.com/omniORB/contribapp.html.

[15] “OTS/JTS Arjuna Home Page”,
http://arjuna.ncl.ac.uk/OTSArjuna/.

[16] L. Li, A. Forin, G.Hunt, and Y.-M. Wang, “High-
Performance Distributed Objects over a System
Area Network”, MSR-TR-98-68, Microsoft Re-
search, 1998.

[17] S. Maffeis, “Electra - Making Distributed Programs
Object-Oriented”, In the Proceedings of USENIX
Symposium on Experiences with Distributed and
Multiprocessor Systems, IV, 1993.

[18] T. Nakajima, and A. Hokimoto, “Adaptive Con-
tinuous Media Applications in Mobile Computing
Environments”, In Proceedings of the international
Conference of Multimedia Computing and Systems,
1997.

http://www.omg.org/
http://www.uk.research.att.com/omniORB/
http://www.uk.research.att.com/omniORB/contribapp.html
http://arjuna.ncl.ac.uk/OTSArjuna/


[19] T. Nakajima, and H. Aizu, “System Supports for
Environment-Aware Migratory Continuous Media
Applications”, In Proceedings of the Sixth Interna-
tional Conference on Distributed Multimedia Sys-
tems, 1999.

[20] T. Nakajima, ”Practical Explicit Binding Interface
for Supporting Multiple Transport Protocols in a
CORBA System”, AT&T Laboratories, Cambridge,
Technical Report, 1999.

[21] S. Pope, S. J. Hodges, G. E. Mapp, D. E. Roberts,
A.Hopper, “Enhancing Distributed Systems with
Low-Latency Networking” , In Proceeding of In-
ternational Conference on Parallel and Distributed
Computing and Networks (PDCN98), 1998.

[22] T. Richardson, Q. Stafford-Fraser, K.R. Wood, A.
Hopper, “Virtual Network Computing”, IEEE In-
ternet Computing, Vol. 2, No. 1, 1998.

[23] D.C. Schmidt, L. Levin and S. Mungee, “The De-
sign and Performance of Real-Time Object Request
Brokers”, Computer Communications, Vol.21, Apr,
1998.

[24] A. Ward, A. Jones, A. Hopper, “A New Location
Technique for the Active Office”, IEEE Personal
Communications, Vol. 4, No. 5, 1997.

[25] P. Webster, P. Steggles and A. Harter, “The Im-
plementation of a Distributed Framework to sup-
port ‘Follow Me’ Applications” In the Proceeding
of PDPTA’98, 1998.


	Supporting Multiple Transport Protocols in a CORBA System
	Abstract
	1 Introduction
	2 Why IIOP is not Enough?
	3 Design Issues
	3.1 Transport Selection Policy
	3.2 Granularity of Transport Selection Policy
	3.3 Handling Connection Setup Error

	4 Dynamic Transport Protocol Selection in omniORB2
	4.1 CORBA and omniORB2
	4.2 Dynamic Transport Selection in Client
	4.3 Transport Selection Policy
	4.4 Supporting Multiple Transport Protocol in Server

	5 Supporting Multiple Transport Protocols
	5.1 Exporting Transport Information
	5.2 Transport Selection at Client Side
	5.3 Transport Selection at Server Side

	6 Performance Evaluation and Discussion
	6.1 Performance Evaluation
	6.2 Discussion
	6.2.1 Automatic Transport Selection
	6.2.2 Dependencies among Transport Protocols


	7 Conclusion
	Acknowledgement
	References

