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INTRODUCTION

• Recently, network operators and
data centers have moved towards
Virtualization of Network Func-
tions (VNFs).

• An Auto Scaling Entity (ASE)
monitors the load on the VNF and
scale up services depending on the
usage of the VNF instance.

• ASE checks the load at each time
interval called monitoring period
and the VNF needs to wait for
cooldown period to ensure that
scaling action takes place.

• Existing algorithms, used by the
operators to scale the VNFs, use a
static cooldown period.

• We propose an algorithm with the
dynamic adaptation of cooldown
period for scaling of the VNF.

SIMULATION

• We generate number of HTTP re-
quests based on poisson distribu-
tion model to a docker acting as an
HTTP server and then, monitoring
the CPU utilization of the docker.

• We compare the performances of
both the algorithms in terms of
number of instances instantiated
and number of monitoring re-
quests made over time.

ALGORITHMS
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T=Monitoring_period(100sec),
load_threshold = 80% 

load_sum, monitoring_count,i
to zero and instances to 1 

 

Monitor Load
at time

instance i
If 

cooldown period ON
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NO

load_sum += load at i
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check for scaling
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load_sum=0 

If
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NO

NO

YES

Start the
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instances*load_threshold 
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NO

Fig. 1: Existing Scaling Algorithm.

Initialize
T=monitoring_time,

avg_threshold = 80% 
load_sum,monitoring_count,
monitoring time, 'i' to zero,

instances to 1 

Monitor the load at
time i 

If load at i >=
instances*avg_threshold

Reset monitoring_count,
load_sum to zero

T = monitoring_period
i += T 

If 
cooldown period is 

ON

i = i+T

Start cooldown period and reset
load_sum, monitoring_count to zero

T = quick_monitoring_period 

load_sum += loat at i 
monitoring_count += 1 

avg =
load_sum/monitoring_count 
T = quick_monitoring_period 

Scale up the instances to
ceil(avg/load_thresold) 

and reset monitoring_count,
load_sum to zero

i = i+T 

If 
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YES
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Fig. 2: Proposed Scaling Algorithm.
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(a) CPU util. of docker.
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(b) # Active instances.
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(c) # Monitoring requests.
Fig. 3: Evaluation of the proposed algorithm

• Fig. 3 (a) shows the CPU load pattern on the server, on which we test the algorithms.

• Fig. 3 (b) shows how do both algorithms react to traffic. The proposed algorithm
uses less number of instances at the times when less number should have been used,
and vice-versa.

• Fig. 3 (c) shows number of CPU monitoring requests made in each interval. A
total of 200 and 394 monitoring requests have been made by existing and proposed
algorithm respectively.

CONCLUSIONS

• We conclude that the proposed al-
gorithm is better than the existing
approach, where unnecessary scal-
ings are avoided.

• This is because the proposed al-
gorithm checks the utilization at
short and regular intervals. This
enables the ASE to take the deci-
sion at the time when scaling is ac-
tually needed.

• However, the proposed algorithm
induces an overhead in terms of
monitoring requests to CPU.

• As future work, we will try to ap-
ply machine learning models to
predict the behaviour of traffic to
take effective scaling decisions.


