
[itemize]leftmargin=5.5mmDynamic Adaptation of Cooldown
Period for Auto Scaling of VNFs

Mohit Kumar Singh, Gaurav Garg, Tulja Vamshi Kiran Buyakar, Venkatarami
Reddy, Antony Franklin A, and Bheemarjuna Reddy Tamma

Department of Computer Science and Engineering, IIT Hyderabad, India

INTRODUCTION

• Recently, network operators and
data centers have moved towards
Virtualization of Network Func-
tions (VNFs).

• An Auto Scaling Entity (ASE)
monitors the load on the VNF and
scale up services depending on the
usage of the VNF instance.

• ASE checks the load at each time
interval called monitoring period
and the VNF needs to wait for
cooldown period to ensure that
scaling action takes place.

• Existing algorithms, used by the
operators to scale the VNFs, use a
static cooldown period.

• We propose an algorithm with the
dynamic adaptation of cooldown
period for scaling of the VNF.

SIMULATION

• We generate number of HTTP re-
quests based on poisson distribu-
tion model to a docker acting as an
HTTP server and then, monitoring
the CPU utilization of the docker.

• We compare the performances of
both the algorithms in terms of
number of instances instantiated
and number of monitoring re-
quests made over time.

ALGORITHMS

Initialize

T=Monitoring_period(100sec),
load_threshold = 80%

load_sum, monitoring_count,i
to zero and instances to 1

Monitor Load
at time

instance i
If

cooldown period ON

YES

NO

load_sum += load at i
monitoring_count += 1

avg =
load_sum/monitoring_count

i += T

Scale up the
instances

instances =
avg/load_threshold

check for scaling
(avg>=instances*load_threshold)

YES

Reset the variables
monitoring_count=0,

load_sum=0

If
load at i >= load_threshold

NO

NO

YES

Start the
cooldown

period
i = i + T

If
load at i <

instances*load_threshold

scale down the
instances to

load at i /
load_threshold,

i = i + T

YES

i = i + T

NO

Fig. 1: Existing Scaling Algorithm.

Initialize
T=monitoring_time,

avg_threshold = 80%
load_sum,monitoring_count,
monitoring time, 'i' to zero,

instances to 1

Monitor the load at
time i

If load at i >=
instances*avg_threshold

Reset monitoring_count,
load_sum to zero

T = monitoring_period
i += T

If
cooldown period is

ON

i = i+T

Start cooldown period and reset
load_sum, monitoring_count to zero

T = quick_monitoring_period

load_sum += loat at i
monitoring_count += 1

avg =
load_sum/monitoring_count
T = quick_monitoring_period

Scale up the instances to
ceil(avg/load_thresold)

and reset monitoring_count,
load_sum to zero

i = i+T

If
monitoring_count >= count_threshold and

avg >= instances*avg_thresshold

YES

NO

YES

YES

NO

NO

Fig. 2: Proposed Scaling Algorithm.

RESULTS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000

C
P

U
 L

o
a
d
 (

in
 %

)

Time(in secs.)

(a) CPU util. of docker.

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

N
u
m

b
e
r

o
f
In

s
ta

n
c
e
s

Time(in secs.)

Apt number of instances

Existing Scaling Algorithm

Proposed Scaling Algorithm

(b) # Active instances.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5000 10000 15000 20000

N
u
m

b
e
r

o
f
M

o
n
it
o
ri
n
g
 R

e
q
u
e
s
ts

Time(in secs.)

Existing Scaling Algorithm
Proposed Scaling algorithm

(c) # Monitoring requests.
Fig. 3: Evaluation of the proposed algorithm

• Fig. 3 (a) shows the CPU load pattern on the server, on which we test the algorithms.

• Fig. 3 (b) shows how do both algorithms react to traffic. The proposed algorithm
uses less number of instances at the times when less number should have been used,
and vice-versa.

• Fig. 3 (c) shows number of CPU monitoring requests made in each interval. A
total of 200 and 394 monitoring requests have been made by existing and proposed
algorithm respectively.

CONCLUSIONS

• We conclude that the proposed al-
gorithm is better than the existing
approach, where unnecessary scal-
ings are avoided.

• This is because the proposed al-
gorithm checks the utilization at
short and regular intervals. This
enables the ASE to take the deci-
sion at the time when scaling is ac-
tually needed.

• However, the proposed algorithm
induces an overhead in terms of
monitoring requests to CPU.

• As future work, we will try to ap-
ply machine learning models to
predict the behaviour of traffic to
take effective scaling decisions.

