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Fig. 1 CIS Cybersecurity report on malware infection vector
1. Email is the most common entry point of targeted attacks

2. About half of all email traffic is malspam, it means about 14.5 billion malspam are
sent every single day in Q1 2018
3. Currently, the majority of security systems are unable to detect and stop today’s ad-

vanced email threats that are specifically designed to fool the security systems
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Fig. 2 Example how human being analyze email header

Unlike machine, cybersecurity experts also take consider in email header where suspi-

cious data and their relationship among them are provided. For example:

- A relationship between domain zone and language

- A relationship between time zone and time sent

- Email was written by machine translation detection
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Fig. 3 Differnetial of email spawn time between normal email, work email and malspam

From 436 work mails (Green), 4251 normal mails (Blue), and 277 malspam (Red) We
can see that most of normal and work mails were sent on work time (8AM-8PM), but

the malspam’s sent time were varied

Our research focus on developing a new algorithms by using email header information analy-

sis for malspam filtering and also to increase a possibility of zero-day malicious email detection
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Fig. 4 Design Method for EHIA and Deep-Learning
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Fig. 5 Features extraction flows chart

From email dataset we first extract 3 features: source address, timestamp and subject

Then we can extract more features from those 3 to get other features in order.
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and risk-words detected features

Experiments Results
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Spam;’malswore than 500,000 (from http://untroubled.org/spam/ &

On progress Cybersecurity Center, Kyushu Univ.)

EConclusion

In this research, we proposed a method by using new features extracted from email headers

and deep-learning approach to detect malspam. From the current experiments, we have not
used all the features yet, but we got the best detection result at 78.66% accuracy. Thus, we
keep doing more experimentation and improving the method technique to evaluate the detec-

tion result
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