
mitiKV: An Inline Mitigator for DDoS Flooding Attacks

Yuta Tokusashi⇤, Yohei Kuga⇤, Ryo Nakamura†, Hajime Tazaki‡, Hiroki Matsutani⇤
{tokusasi, matutani}@arc.ics.keio.ac.jp, {sora, upa}@haeena.net, tazaki@wide.ad.jp

⇤Keio University, †University of Tokyo, ‡ IIJ Innovation Institute

Abstract

We propose mitiKV, a hardware-based Distributed Denial of Service (DDoS) mitigator which can clean up ma-
licious tra�c at transit links. DDoS flooding attack has been an issue for Autonomous Systems to provide stable
network service to legitimate users. Many research on DDoS detection focuses on the statistical analysis on network
tra�c in order to employ filtering rules at (software) middle-boxes. In our methodology, DDoS attacks are detected
by filtering suspected DDoS packets, which are associated with ICMP packets replied by victim hosts as an error. We
adopt hardware-based key value store on an FPGA to manage a rule to determine DDoS packets. We developed a
prototype system on an FPGA board, called mitiKV, and demonstrated to prevent DNS-based amplification attacks as
a proof of concept. Our evaluation shows that mitiKV has a capability of DDoS mitigation in 10Gbps line rate. This
methodology can scale up to 100Gbps link speed and can be also adopted into other DDoS attacks.

Keywords: DDoS Mitigation, Middlebox, Packet Filtering, Network hardware, FPGA

1. Introduction

Distributed Denial of Service (DDoS) attack is a sig-
nificant problem of the Internet. Major DDoS attacks
exhaust network or server resources of victims. Am-
plification attacks using UDP-based protocols such as
DNS and NTP try to exhaust link capacity on victim net-
works. TCP SYN flooding attacks lead to victim servers
consuming CPU resources. With the growth of impor-
tance of services on the Internet, DDoS attack cannot be
ignored from a viewpoint of service availability. Hence,
mitigating DDoS attack has become increasingly impor-
tant.

The volume of DDoS attacks to exhaust network re-
sources is increasing due to the growth of link speed
and server performance. Arbor Networks reports that
the largest tra�c volume of DDoS attack was 100 Gbps
in 2010 and increased to 500Gbps in 2015 [1]. In addi-
tion, 66% of DDoS attack’s targets are customers, such
as end users, financial and hosting services. The cus-
tomer networks purchase transit connectivities that are
10, 40 and up to 100Gbps links from transit network
providers in general. Therefore, today’s DDoS attacks
exhaust transit links e↵ortlessly; and thus DDoS attacks
should be mitigated in transit provider sides to protect
customer networks.

On the other hand, a current dominant type of DDoS
attack is DNS-based amplification attack. The DNS
protocol has a high tra�c amplification rate and there
are over 12 millions of open recursive resolvers around
the world that can be used for amplification attack [2]1.
Furthermore, Arbor Networks reports that DNS occu-
pies 85% of protocols used for amplification attacks [1].
Thus, if DNS-based amplification attack is completely
prevented, most of DDoS attacks can be eliminated.

In this study, we propose a novel hardware-based
DDoS mitigation system, called mitiKV, that focuses
on the DNS amplification attack. The mitiKV works
as an inline middlebox on a transit link between a tran-
sit provider and a customer network. mitiKV detects
and discards DDoS packets toward customer network
without fail by using ICMP port unreachable message.
In addition, detecting and filtering the attacks are all
processed in hardware-based key value store on Field
Programmable Gate Array (FPGA), so that mitiKV
achieves high throughput up to 100Gbps. We developed
a prototype system on an FPGA board and demonstrated
to prevent DNS-based amplification attacks as a proof of
concept. Our evaluation shows that mitiKV has a capa-
bility of mitigation in 10Gbps line rate. This methodol-

1as of at August 21, 2016.

Preprint submitted to Internet Conference 2016 October 1, 2016



ogy can scale up to 100Gbps link speed and can be also
adopted into the other types of UDP-based amplication
attacks.

2. Related work

DDoS detection mechanisms can be classified into
two categories: anomaly detection and pattern match-
ing [3]. Anomaly detection based methods collect nor-
mal system or network behavior regularly and compare
present state with the normal state to detect anomalies.
PacketScore [4] based on anomaly detection provides
a score, called Conditional Legitimate Probability, that
can be used to decide a packet is malicious or not. An
advantage of pattern matching over anomaly detection
is that several known attacks are detected without fail.
Snort [5], a popular open source intrusion detection sys-
tem using pattern matching, has wide usage. The pro-
posed detection is also one of pattern matching method
focusing on DNS-based amplification attack.

In addition to DDoS detection mechanisms, data
plane system for packet forwarding and filtering is also
a fundamental part of DDoS mitigators. In such data
plane systems, high throughput is a technical issue to
overcome the growth of attack tra�c volume. CY-
SEP [6] is a hardware architecture for firewall, en-
cryption/decryption, message authentication and DDoS
mitigation. The DDoS detection system of CYSEP is
PacketScore[4], and it is designed to be implemented in
ASIC. mitiKV and CYSEP mitigation module prevent
link congestion attacks from exhausting on high-speed
networks by hardware implementation. On the other
hand, other hardware based mitigation approaches, Sen-
tinel [7] and SQL DDoS Mitigator [8], mitigate end
host CPU resource exhaustion attacks by generating and
sending CAPTCHA [9] on hardware. In contrast to mi-
tiKV, they are installed in front of victim servers and
protect server resources.

As opposed to hardware-based technique, software-
based packet inspection implementations such as
Snort [5] have a plenty of flexibility in order to in-
spect, and filter packets from the network. Although
software-based technique historically has performance
drawbacks, many proposals were addressed to allevi-
ate the drawbacks to take both advantages of high-
performance and flexible packet processing simultane-
ously. GASPP [10] is a network tra�c processing
framework which integrates Graphic Processing Units
(GPU) for their packet processing purposes. While tak-
ing advantage of flexible packet processing such as fil-
tering with a regular expression specified by users, it
optimizes memory usage as well as packet scheduling

Customer AS A�

Victim  
server�

Victim  
server�

Customer AS B�

Victim  
server�

Victim  
server�

Attacker�

Transit 
Provider�

The Internet�

DNS Open 
Resolver�

DNS Open 
Resolver�

DNS Open 
Resolver�

DNS Query�

Amplifi
ed 

DNS Resp
onse�

mitikv�
	�����
�������
�	�
����Filtering�

Figure 1: The overview of mitiKV installation on a provider network.
mitiKV box is installed on a provider side of a customer link and
works as an inline middlebox.

for packet processing in order to speedup its processing.
It also integrates Snort to accelerate the performance to
mitigate tra�c from attacks. Our proposed method does
not require such a flexible method to packet processing
as it only needs to look at a specific portion of a packet.
The simplified method gives us an opportunity to imple-
ment the mitigation middlebox as a hardware.

3. mitiKV Architecture

The mitiKV is a hardware-based, autonomous, inline
DDoS mitigation system. Figure 1 shows the overview
of mitiKV on a provider network. DDoS defense mech-
anisms can be characterized with three features: activity
level, cooperation degree and deployment location [3].
We will discuss mitiKV in terms of these features be-
low.

• Activity level: mitiKV is reactive and pattern
matching based detection mechanism. mitiKV is
specialized in detecting DNS amplification attack,
therefore, mitiKV achieves high speed detection
and blocking compared to anomaly detection.

• Cooperation degree: mitiKV does not need any
other tra�c measurement or filtering systems. mi-
tiKV performs DDoS attack detection and filter-
ing on its hardware. In addition, multiple mitiKV
boxes installed on multiple customer links work
autonomously.

• Deployment location: mitiKV is located on a
transit link which is connected to other networks.
It protects a link connected to a customer network
against DDoS attack.

2



In this manner, mitiKV works as an inline DDoS
mitigator on customer links to protect customer servers
against DNS-based amplification attack.

3.1. DDoS detection by ICMP behavior
The key idea of the DNS-based amplification attack

detection mechanism of mitiKV is leveraging one of the
most basic mechanisms of the Internet, ICMP Port Un-
reachable message.

ICMP port unreachable message contains the IP
header and the first 64 Bytes of the original datagram’s
data [11], therefore, DNS-based amplification attack
can be identified by checking ICMP port unreachable
message on customer links.

The detection sequence is shown in Figure 2 and is
explained below. Figure 3 shows state machine to man-
age 4-tuple state discussed below.

1. DNS Query : An attacker sends a DNS query to
DNS open resolver. the attacker spoofs its source
IP address as victim’s host IP address.

2. DNS Response : DNS open resolver receives a
query and replies to the spoofed source IP address
to victim host via transit link. mitiKV learns 4-
tuple that consists of source IP address, destination
IP address, source UDP port number and destina-
tion UDP port number. mitiKV updates the state
into “SUSPECTIVE”.

3. ICMP Port Unreachable Meassage : Victim host
receives an unexpected DNS response packet and
replies ICMP port unreachable message including
the DNS response packet on payload. mitiKV up-
dates the state of 4-tuple into “BLOCKED” and de-
cides this as DDoS attack.

4. DNS Query : Repeating steps 1 and 2.
5. DNS Response : DNS open resolver replies against

a query, but mitiKV already learned the 4-tuple and
recognizes that this packet is related to DDoS at-
tack. Thus, mitiKV discards this packet.

By this method, mitiKV achieves fast and undoubted
DNS-based amplification attack detection.

3.2. Hardware design
Figure 4 shows our mitiKV architecture overveiw.

mitiKV consists of the following modules.

• DDoS Attack Filter module : This module mon-
itors all packets to filter the packets related to sus-
pective DDoS attacks. When DDoS attack packets
are filtered, the module creates a tuple which will
be processed in DB Lookup/insert module. We

Attacker� DNS Open 
Resolver�

Victim  
Server�mitiKV�

1. DNS Query�

2. DNS Response�

3. ICMP Port Unreach 
(Payload: DNS Res. Data)�

4. DNS Query�
5. DNS Response�

Learning 
ICMP Payload�

Block!�

4-tuple: src_ip, dst_ip, src_port, dst_port(53).�

Learning 
4-tuple�

Figure 2: The detection sequence of mitiKV.

IDLE 

SUSPECTIVE 

BLOCKED 

EXPIRED 

A “ICMP port unreachable” packet is 
detected 

A “DDoS attack” candidate is detected  

A “DDoS attack” packet 
updates expire time  

Time expires 

Figure 3: State machine of mitiKV that manages 4-tuple.

assume DNS-based amplification attack as attack
tra�c in Section 3.3. In this case, DNS response
packets whose source UDP port number is 53 are
filtered.

• ICMP Filter module : This module monitors all
packets whether packets with ICMP port unreach-
able and an error packet over the ICMP matched
with DDoS suspective packet as mentioned in Sec-
tion 3.1. When packets are filtered, this module
sends a request query to database to lookup state
and then checks that the packet is suspective DDoS
attack.

• DB Lookup/Insert module : This module pro-
vides two interfaces, READ and WRITE inter-
faces to manage flows and their states. DDoS At-
tack Filter module and ICMP Filter module access
this module to check the flow whether DDoS at-
tack or to update the state. This DB is managed
by hardware-baed key value store on the memory
module.

3



MAC 
RX 

TX 

MAC 
RX 

TX 

Memory 
Module 

ICMP 
Filter 

DDoS 
Attack 
Filter 

DB 
Lookup/ 
Insert 

System 
Counter(1Hz) 

Soft Macro 
CPU 

Memory 
Controller 

Internal  
Network 

External  
Network 

mitiKV 
FPGA design 

Figure 4: mitiKV architecture.

8 

Key Value 

0 

Source IP 
Address 

Destination IP 
Address 

4 

Source  
UDP Port 

10 12 0 1 2 3 4 

Expired 
Time 

flag state 

   

Index 

0 
1 
2 
3 1.2.3.4 9.8.7.6 12345   1   1 32221 

dst  
UDP Port 

53 

Figure 5: Hash Table design on mitiKV.

• System Counter : This module is a counter mod-
ule generating timestamp for expiring logic. The
timestamp in value field is checked if time is ex-
pired when DB module accesses each key value
entry.

An external memory is used as hash table as shown
in Figure 4. Hash table can be implemented on DRAM,
SRAM and internal FPGA memory. Each of these
memory modules has a constant access latency. The
di↵erence of these access latency is hidden by imple-
menting a pipeline deeply in which the number of stage
is equivalent to the access latency. On the other hand,
the memory size will be a crucial factor to mitigate at-
tack tra�c. To mitigate abusing tra�c, hash table needs
to be larger than the size which is capable of storing the
number of abusing flows in a period. The hash table size
and hit ratio on hash table is the key component on this
approach. We will evaluate them in Section 4.1.

Figure 5 shows hash table design on mitiKV. Each
entry consists of key and value. Key is 12B fixed length
and consists of IPv4 source address, IPv4 destination
address, source UDP port number and destination UDP
port number. Value is 4B fixed length and consists of
status, flag and expiring time. Index is calculated by
hash fucntion in order to retrieve the key. The key re-
trieved from the hash table is compared with the re-
quested key to distinguish both the requested key and

the key from hash table are identical.

3.3. FPGA implementation
In this section, a prototype implementation of the

proposed mitiKV is illustrated. Our mitiKV is imple-
mented on Digilent NetFPGA-SUME board [12, 13].
An FPGA device used is Xilinx Virtex-7 XC7V690T
FFG1761-3. The board has four 10GbE interfaces for
communication. Design tool used is Xilinx Vivado
2015.4.

Our mitiKV module uses Advanced eXtensible Inter-
face (AXI) Stream 2 as data bus interface. We use 10G
Ethernet Subsystem IP3 as a 10G MAC. The data width
is 64bit. Our implementation is based on AXI Stream
data bus interface.

Integrating CPU into our implementation can pro-
vide configurations, statistaical information and manual
managing of rules on key value store via an user inter-
face on UART. We did not implement a soft-macro CPU
for system configuratin for the sake of simplicity.

We implemented the key value store on Block-
RAMs4. The number of hash table entries is 1k and
262k to store filtering rules. If more capacity of stor-
ing rules is required, external memory such as SRAM
or DRAM is also avaliable to store them. As we men-
tioned, a constant access latency of SRAM and DRAM
is hidden by implementing a deep pipiline.

Specifically, 10GbE requires running at more than
156.25MHz when AXI stream data width is 64bit. Ta-
ble 1 shows the synthesis report of mitiKV per table
size. Hash table sized we implemented are 1k and
262k sizes. In 262k size, the maximum frequency is
162.94MHz. The result of the synthesis indicates that
mitiKV is enough to run on 10GbE. We implemented
262k size hash table, which is the maximum size of sin-
gle memory controller. The BlockRAM utilization is
64.73%. In case more hash table space is needed, an ex-
ternal RAM such as SRAM and DRAM can be replaced
instead of BlockRAMs. Since the slice utilization indi-
cates that mitiKV core is so small compared to the over-
all FPGA’s area, the mitiKV core can be also deployed
in other hardware-based network appliances.

4. Evaluation

4.1. Hash table size managed on mitiKV
Hash table size is the critical factor in terms of mit-

igating DDoS attack. DDoS Attacker may spoof mul-
tiple source IP addresses. In the case, the number of

2AXI is a family of microcontroller buses by ARM AMBA.
3Inteligent Property provided by Xilinx
4Xilinx FPGA contains serveral kilobits memory as internal RAM.

4



Table 1: Synthesis results.

Hash table entry size 1k 262k
Maximum Frequecy [MHz] 163.11 162.94

Slice Utilization [%] 4.17 6.21
BlockRAM Utilization [%] 1.63 64.73

 0.1

 1

 10

 100

 10  100  1000  10000  100000  1x106  1x107

H
it 

ra
tio

 o
n
 h

a
sh

 t
a
b
le

 [
%

]

The number of combinations

1024
262k

Figure 6: Simulation result on CRC32.

combinations of source IP address and source UDP port
number that request packet includes is important to mit-
igate DDoS attack. Thus, hash table size whether how
many keys to be stored and key conflicts should be han-
dled.

The hash table size is limited by a hardware physical
problem in which an FPGA has limitations of an exter-
nal memory module [14]. Here, we evaluate hash table
size and the number of mitigated packets. We built a
simulator of mitiKV behavior for the evaluation.

Here, we use a simple incremental pattern as data pat-
tern, where combinations of destination UDP port and
source IP address is incremented for each access. Hash
functions used are CRC32 and lookup3 of jenkins hash.
CRC32 is often used in a hardware implementation hash
such as calculating algorithm of frame check sequence
on Ethernet MAC. Jenkins hash is often used in hard-
ware design of key value store [15].

Figures 6 and 7 show simulation results when hash
table size is 1k and 262k entries using CRC32 and jenk-
ins hash to calculate hash table index, respectively. X-
axis denotes the number of combinations of amplifiers’s
source IP address and destination UDP port number. Y-
axis denotes the hit ratio of packets which are mitigated
by mitiKV. In 1k table size, mitiKV cannot mitigate
these packets related to DDoS attacks when the num-

 0.1

 1

 10

 100

 10  100  1000  10000  100000  1x106  1x107

H
it 

ra
tio

 o
n
 h

a
sh

 t
a
b
le

 [
%

]

The number of combinations

1024
262k

Figure 7: Simulation result on jenkins hash.

ber of combinations is over 600 on CRC32. In 262k
hash table size, mitiKV cannot mitigate packets when
the number of combinations is over 14000. In jenkins
hash, we get higher hit ratio than the ratio of CRC32.
When the number of combinations is 1000, the hit ratio
is 38%. This implies that hash table is used e�ciently
when jenkins hash is adopted, compared with CRC32.
Thus, we have to choose hash table size carefully taking
expected tra�c amounts and network interface of transit
link into consideration. We will continue to investigate
the hashing system including hash function to obtain the
higher hit ratio on mitiKV.

4.2. Hardware mitigation test
Here, we evaluated FPGA implementation as simu-

lated in Section 4.1.

4.2.1. Hardware environment
Figure 8 shows an evaluation environment. Each

component is explained as follows, except our mitiKV.
Table 2 shows specification of each component on mea-
surement environment.

• (a) FPGA-based Attacker Emulator : Attacker
emulator generates packets related to DNS ampli-
fier attack. More specifically, it generates DNS re-
sponse packets with response bit by changing the
combinations of source IP address and destination
UDP and sends them to the victim host via mitiKV
in 10Gbps line rate.

• (b) FPGA-based TAP device : In order to mea-
sure packets per second (pps) between mitiKV and
the victim host, we installed the FPGA-based TAP
device. The TAP device has four Ethernet port.

5



Table 2: Components of measurement environment.

Hardware OS NIC + Driver Main memory
(a) Xilinx VC709 — — —
(b) Xilinx VC709 — — —
(c) Intel Core i5-4590 FreeBSD 10.2R Intel X520-DA2 + ixgbe 2.8.3 4GB
(d) Intel Core i7-4770 Fedora 24 (Linux 4.6.6) Intel X520-DA2 + ixgbe 4.2.1 32GB

FPGA-based  
Attacker Emulator 

(a) 
mitiKV 

FPGA-based 
TAP device 

(b) 
Victim Host 

(d) 

Traffic Analyzer 
(c) 

Figure 8: Evaluation envrionment.

Two ports are bridging. Port0 is connected to mi-
tiKV. Port1 is connected to victim host. Remaining
two ports are connected to (c) tra�c analyzer for
mirroring of inbound and outbound tra�c.

• (c) Tra�c Analyzer : The tra�c analyzer host
measures packets per second from mitiKV’s out-
bound port and victim host’s inbound port. This
analyzer acts as a packet counter using netmap
framework [16] to measure pps in two 10GbE
ports: victim host’s RX and TX ports.

• (d) Victim Host : We assume that victim host is a
general Linux machine.

4.2.2. ICMP kernel tuning
A general Linux machine is set as ratelimit’s parame-

ter that defines a packet per one second against one host.
Since the mitiKV is located at transit link of network
service provider, mitiKV needs to observe all packets
in the located network and the connected network. To
evaluate mitiKV hardware, the Linux machine denoted
in (d) is required to emulate multiple victim hosts lo-
cated in connected network. We configured kernel pa-
rameters for ICMP on victim host for emulating multi-
ple victim hosts. A Linux host returns an ICMP packet
with a port unreachable message per one second against

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  1  2  3  4  5  6  7  8  9

m
a

lic
io

u
s 

tr
a

ff
ic

 c
le

a
n

e
d

 b
y 

m
iti

K
V

 [
p

a
ck

e
ts

]

time [sec]

DDoS attack

Figure 9: DDoS attacking against incremental 1000 destination UDP
ports.

one remote host in an environment with default kernel
parameters. Here, we tuned the following parameters as
returned packets per one second.

• /proc/sys/net/ipv4/icmp ratelimit : 0

• /proc/sys/net/ipv4/icmp msgs per sec : 14880000

• /proc/sys/net/ipv4/icmp msgs burst : 25600

In a practical use case, an attacker sends spoofed
queries against multiple multiple open resolvers. The
victim host receives multiple reponse packets from open
resolvers. Although the above parameters to achieve
high performace for the ICMP response packet which
indicates error messages are not required, more detail
analysis is needed to mitigate actual DDoS tra�c.

In this paper, we do not make no mention of these
paramters.

4.2.3. Results
Figure 9 shows DDoS attack against incremental

1000 destination UDP ports on an environment as
shown in Figure 8. This measurement is performed on

6



(c) tra�c analyzer. Received packets from two network
interfaces on the tra�c analyzer machine represents the
number of DDoS attack packets and ICMP port un-
reachable messages, respectively. The figure indicates
that our proposed detection method takes time to learn
all DDoS flows. Although the latency between victim
host and mitiKV is small due to the back-to-back con-
nection in this evaluation, the milisecond level latency
to achieve ICMP port unreachble messages to the mi-
tiKV occurs due to network devices in the practical case.
In this case, victim may recieve more attacks in a period
of learning flows on the mitiKV because it takes more
time to generate DDoS flows.

4.3. Scalability up to 100Gbps link
A transit link will be replaced with 100Gbps and

400Gbps high bandwidths link interface to provide net-
work services to thier customer. We investigated MAC
IP specification provided by Xilinx and calculated re-
quired clock cycles for a hardware-based pipeline. Ta-
ble 3 shows the scalability on 10GbE, 40GbE and
100GbE. To support 100GbE interface, high-end FPGA
series are required to implement mitiKV. It is a simple
pipeline to design 40GbE and 100GbE because required
clock cycles related to packet parsing for detection of
DNS response are reduced due to increasing data width
of MAC on 40GbE and 100GbE. To support high-speed
interfaces such as 40GbE and 100GbE, a custom FPGA
board equipped with these interface is required. Our mi-
tiKV core design is applicable on these intefaces.

4.4. ICMP Port unreachable message
The proposed method in this paper heavily relies on

the message encoded by the network stack of the victim
hosts. Therefore understanding how the ICMP destina-
tion unreachable message is observed at a transit link
is important since some implementations may not em-
bed the original packet information which triggers port
unreachable message, some middle-boxes may strip the
packet or just simply filtered out. The standard says If
a higher level protocol uses port numbers, they are as-
sumed to be in the first 64 data bits of the original data-
gram’s data. [11], which is interpreted as 28 bytes in
IPv4 (i.e., 20 bytes IP header and 8 bytes higher proto-
col datagram) of the original packet is in the payload. In
the IPv6 standard [17] it specifies di↵erently with 1280
bytes payload at the maximum size.

In this section, we investigate the availability of the
key information for our proposed method by analyzing
the packet trace at a public research and educational
backbone network. In summary, the ICMP port un-
reachable messages we observed fulfill our expectation

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

07/07 07/14 07/21 07/28

#
 o

b
se

rv
e

d
 p

a
ir
 o

f 
IP

 a
d

d
re

ss
e

s 
(n

)

date

1) ICMP unreach
2) UDP53

Figure 10: Number of IP address pairs among 1) all of observed ICMP
port unreachable messages, and 2) 1) with DNS packet in the payload.

in order to detect UDP-based amplification attack. We
will discuss the detail in the following description.

Dataset
We used tra�c traces from MAWI (Measurement and
Analysis on the WIDE Internet) archive samplepoints
F [18] in July 2016 (i.e., 31 days). The archive includes
15 minutes daily packet trace at the transit link of the
backbone network, with anonymized IP addresses in the
traces.

Although the tra�c trace only recorded a short du-
ration in a day as well as with partial length (first 96
octets) of packets, it contains enough information of
what we are investigating here - we only need the pay-
load of IPv4 ICMP destination unreachable message
and the trend of ICMP message, not the full number
of messages exchanged, to justify how our proposed
method is practical in a wild.

Point of interests
We focus on the number of source and destination pairs
of IP addresses in the trace which 1) have ICMP desti-
nation port unreachable (type 3 code 3) messages, 2) 1)
with DNS packet (port 53 of UDP packet) in the pay-
load. In addition to that, we counted the distribution of
packet size which each packet contains ICMP destina-
tion unreachable message in order to study how the net-
work stack implementation encodes the original packet
when it sends back the error.

Results
Figure 10 shows the number of observed flows in the
packet traces which contains the ICMP destination un-
reachable messages and payloads which the original
packets were DNS packets. Figure 11 plots the distribu-
tion of packet size among all of ICMP port unreachable
messages.

7



Table 3: Scalability.

10GbE 40GbE 100GbE
Clock Frequency [MHz] 156.25 156.25 322.266

Data Width [bit] 64 256 512
DNS Reply Detection [clock cycles] 8 2 1

Hash Function (CRC32) [clock cycles] 1 1 1
KVS Processing [clock cycles] 2 2 2

Pipilining Depth 11 5 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600

C
D

F

Packet Size (bytes)

Figure 11: Cumulative distribution of the packet size in the ICMP
destination error message, which indicates the existence of the origi-
nal packet to identify it is DNS packet or not.

As we can see in Figure 10, there are a number of
ICMP port unreachable messages which the original
packets are DNS related (request or response). Also
Figure 11 represents that the minimum packet size of
the original packet is 28 bytes5, which can contain the
port number of UDP to identify if the packet is DNS or
not.

Above information confirms that there are su�cient
information to identify the packet under suspicious by
our proposed method based on the ICMP port unreach-
able messages.

5. Conclusion

We proposed a novel hardware-based DDoS mitiga-
tion system, called mitiKV, that focuses on the DNS-
based amplification attack. We focused on protocol

5The minimum packet size 56 bytes of ICMP unreachable message
can be interpreted as 28 bytes the original packet since the size of
IPv4 header is 20 bytes and the size of ICMP Destination Unreachable
Message without the Original datagram is 8 bytes.

behavior of the DNS-based amplification attack and
the ICMP port unreachable message. The mitiKV de-
tects DDoS attack and managed on hardware-based key
value store. We analyzed real world tra�c and showed
that ICMP port unreachable messages have packet pay-
load including required data for our protocol-based ap-
proach. We implemented a prototype system on an
FPGA board and showed that mitiKV can mitigate ma-
licious tra�c in 10GbE. We discussed the scalability
of our approach for further high throughput interfaces,
such as 40GbE and 100GbE.

Ackowledgment

The authors would like to thank NTT Communica-
tions for providing a testing environment.

References

[1] Arbor Networks, Worldwide infrastructure security report,
https://www.arbornetworks.com/images/documents/

WISR2016_EN_Web.pdf.
[2] Open resolver project, http://openresolverproject.

org/.
[3] J. Mirkovic, P. Reiher, A taxonomy of ddos attack and ddos de-

fense mechanisms, SIGCOMM Comput. Commun. Rev. 34 (2)
(2004) 39–53.

[4] Y. Kim, W. C. Lau, M. C. Chuah, H. J. Chao, Packetscore:
a statistics-based packet filtering scheme against distributed
denial-of-service attacks, IEEE Transactions on Dependable and
Secure Computing 3 (2) (2006) 141–155.

[5] Snort, Snort - network intrusion detection and prevention sys-
tem, https://www.snort.org/.

[6] H. J. Chao, R. Karri, W. C. Lau, Cysep - a cyber-security pro-
cessor for 10 gbps networks and beyond, in: Military Communi-
cations Conference, 2004. MILCOM 2004. 2004 IEEE, Vol. 2,
2004, pp. 1114–1122 Vol. 2.

[7] P. Djalaliev, M. Jamshed, N. Farnan, J. Brustoloni, Sentinel:
Hardware-accelerated mitigation of bot-based ddos attacks, in:
2008 Proceedings of 17th International Conference on Com-
puter Communications and Networks, 2008, pp. 1–8.

[8] K. Pandiyarajan, S. Haridas, K. Varghese, Transparent fpga
based device for sql ddos mitigation, in: Field-Programmable
Technology (FPT), 2013 International Conference on, 2013, pp.
82–89.

8



[9] L. V. Ahn, M. Blum, N. J. Hopper, J. Langford, Captcha: Us-
ing hard ai problems for security, in: Proceedings of the 22Nd
International Conference on Theory and Applications of Crypto-
graphic Techniques, EUROCRYPT’03, Springer-Verlag, Berlin,
Heidelberg, 2003, pp. 294–311.

[10] G. Vasiliadis, L. Koromilas, M. Polychronakis, S. Ioanni-
dis, Gaspp: A gpu-accelerated stateful packet processing
framework, in: 2014 USENIX Annual Technical Conference
(USENIX ATC 14), USENIX Association, Philadelphia, PA,
2014, pp. 321–332.

[11] J. Postel, et al., RFC 792: Internet control message protocol,
InterNet Network Working Group.

[12] NetFPGA Project, http://netfpga.org/.
[13] N. Zilberman, Y. Audzevich, G. Covington, A. Moore, NetF-

PGA SUME: Toward 100 Gbps as Research Commodity, IEEE
Micro 34 (5) (2014) 32–41.

[14] M. Blott, L. Liu, K. Karras, K. Vissers, Scaling Out to a Single-
Node 80Gbps Memcached Server with 40Terabytes of Memory,
in: Proceedings of the USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage’15), 2015.

[15] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ran-
ganathan, M. Margala, An FPGA Memcached Appliance, in:
Proceedings of the International Symposium on Field Pro-
grammable Gate Arrays (FPGA’13), 2013, pp. 245–254.

[16] L. Rizzo, netmap: A Novel Framework for Fast Packet I/O, in:
Proceedings of the USENIX Security Symposium (Security’12),
2012, pp. 101–112.

[17] A. Conta, S. E. Deering, M. G. Ed, RFC 4443: Internet Control
Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification, Network Working Group.

[18] K. Cho, K. Mitsuya, A. Kato, Tra�c data repository at the wide
project, in: Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’00, USENIX Associa-
tion, Berkeley, CA, USA, 2000, pp. 51–51.

9


