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Many Internet services today use multiple geographically distributed locations to provide a service with fast response

time and fault tolerance. When using multiple locations to provide a service, we require the latency between the locations

to be as low as possible to prevent impacts to the service response time. To realize this, we propose Latency Efficient

Overlay Network, which is a Layer 2 network extension technology capable of forwarding Ethernet frames using the lowest

latency path. LEON measures the latency of the locations and uses Dijkstra’s algorithm to select the lowest latency

path. By using LEON, the performance of latency dependent components improves. This allows faster processing of the

requests to a service and a service to be provided with better response time.

1 Background

Many Internet services today use multiple geo-

graphically distributed locations to provide a service.

However, as the paths on the Internet are not selected

using parameters such as latency, the latency is high

in some cases. High latency between the components

of the service cause slower processing of requests. This

results in a longer response time visible to the service’s

clients.

1.1 Internet Services Today

The services on the Internet today need to be re-

sponsive and fault tolerant in order to achieve user

satisfaction. To achieve this, many services are now

using multiple locations to provide a service.

The Internet users’ satisfaction is greatly affected

by the service’s response time. According to the re-

search done by Zona Research in 2001, the response

time level at which users felt satisfied was 8 seconds

[1]. However, according to research done by Akamai

5 years later, in 2006, it was 4 seconds [2]. Further-

more, the same research was done by Akamai another

3 years later, in 2009, and it was 2 seconds [3]. The

response time level at which users feel satisfied can be

predicted to become even lower in the future. To meet

this demand, the response time of a service should be

as low as possible.

Also, service downtimes today can cause great dam-

age to a service. In recent years, there have been

many news stories about natural disasters and power

failures taking down a whole datacenter, some tak-

ing over a week to recover [4]. According to research

done in 2009, the financial losses caused by a one-hour

downtime of a famous online shopping service can be

over 2.8 million dollars [3]. To prevent such damage,

the services on the Internet today are designed to be

fault tolerant.

Multiple locations are often used to provide a ser-

vice with fast response time and fault tolerance. An

example of a service which is provided using multiple

locations is a Content Delivery Network (CDN) ser-

vice provided by Akamai [5]. When a user accesses

the service, the service is provided from the server

closest to the user. This can achieve faster response

time of a service by providing faster data transfer.

Also, service downtimes due to a failure in a location

can be prevented when a service is provided from mul-

tiple locations. In case of a failure in one location,

another location will continue to provide service.

To take advantage of using multiple locations, the

locations of a service are often geographically dis-

tributed and are connected to different networks. Ge-

ographically distributed locations can prevent a ser-

vice failure due to a failure of multiple locations in

the same geographic region caused by natural dis-

asters. Also, by having the locations geographically

distributed and connected to different networks, the

service will have better probability of having a server

near the user.
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1.2 Routing on the Internet

Traffic on the Internet may not always be routed

using the path with the lowest latency. The paths

on the Internet are learned and determined using the

BGP protocol and the traffic is usually routed using

the best path. In BGP, the best path is the path with

the shortest AS-path, passing through the fewest in-

dependently managed networks. The best path is not

determined by the latency or the saturation levels of

the link. Also, business matters are often involved

in determining the best path. In the past, there have

been business disputes which involved peering discon-

nection of two major networks. This resulted in longer

latency between the two networks [6]. Therefore, de-

pending on the destination, the traffic may be routed

over the Internet using a path with high latency.

The latency to the destination may be reduced by

routing the traffic via another location in order to

reach the final destination [7]. If the path relayed

by another location has lower latency than the di-

rect Internet path, we should use the lower latency

path instead of the direct Internet path. Such rout-

ing overlays can improve latency and availability of

the destination [8]. By using routing overlays, we

can communicate with the destination using the low-

est latency path.

1.3 Problem of using Multiple Locations on

the Internet

Services on the Internet are often made up of multi-

ple components. For example, WIDE Cloud, which is

an IaaS cloud service operated by the WIDE Project,

is made up of three components [9]. The first com-

ponent is the hypervisor, which provides CPU and

memory resources to the virtual machine. The sec-

ond component is the storage server, which provides

storage areas for the virtual machines. Lastly, the

third component is the network gateway, which han-

dles the network traffic of the virtual machines. The

components are composed to provide a service.

When a service is provided using multiple locations,

a Layer 2 network is often extended to enable interac-

tion of the components. By extending the same Layer

2 network to all the locations, the service provider can

enforce the same security policy easily. Also, the ser-

vice providers can prevent backend servers from hav-

ing Internet access. Therefore, some service providers

extend the Layer 2 network to the locations to enable

interaction of the components.

In the WIDE Cloud, a Layer 2 network is extended

to all the locations. The WIDE Cloud consists of mul-

tiple locations, mainly inside Japan with some outside

of Japan. The storage server and the network gate-

way are set up in one of the locations. Hypervisors

are set up on all the locations. The hypervisors inter-

act with the storage server and the network gateway

over the extended Layer 2 network.

The latency between the locations is very high com-

pared to the latency inside a single location. When

the components interact over a network with high la-

tency, the performance of the components greatly de-

creases in some cases. For example, the WIDE Cloud

uses NFSv3 [10] to share virtual machines’ disk im-

ages to all hypervisors. However, the performance

of NFSv3 decreases greatly as the latency between

the components grow higher [11]. To prevent a slow

down of request processing due to a decrease of com-

ponent performance from impacting service response

time, the latency between the components should be

as low as possible.

The latency between the components can be re-

duced by making the Layer 2 network extension tech-

nology aware of the latency between the locations. By

making the Layer 2 network extension technology be

able to detect and select the lowest latency path used

to forward Ethernet frames, we can make decrease in

performance of the components due to the latency as

small as possible.

2 Related Work

Layer 2 network extension technologies are used to

extend a Layer 2 network to multiple geographically

distributed locations over the Internet. A tunnel end

point setup on each location is connected to a local

Layer 2 network. When the tunnel end point receives

an Ethernet frame, it encapsulates the Ethernet frame

and forwards them over the Internet. By using Layer

2 network extension technologies, we can virtually cre-

ate a wide area Layer 2 network over the Internet.

There are two types of Layer 2 network extension

technologies. One is a point-to-point Layer 2 network

extension technology and the another is a multi-point

Layer 2 network extension technology. They are de-
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Fig. 1: Current Layer 2 over IP based Layer 2 network

extension technologies limit the topology to a tree

scribed in the following sections.

2.1 Point-To-Point Layer 2 Network Exten-

sion Technology

Point-to-point Layer 2 network extension technolo-

gies such as L2TP [12] are used to extend a Layer 2

network between two locations. A Layer 2 network

can be extended to multiple locations by using mul-

tiple instances of tunnel end points to connect all lo-

cations. A loop in a Layer 2 network topology will

cause problems such as broadcast storm and multi-

cast storm. This will saturate the link between the

tunnel end points and cause high load on the tun-

nel end point. Therefore, the topology of a Layer 2

network extended to multiple locations using point-

to-point Layer 2 network technologies must be a tree

topology.

However, the latency of forwarding Ethernet frames

over the Internet is very high compared to forwarding

Ethernet frames inside a single location. An example

of an extended Layer 2 network’s topology is illus-

trated in Figure 1. In this topology, for an Ethernet

frame to reach from Seoul to Inagi, it will take 36

ms. However, direct Internet path between Seoul and

Inagi is 17 ms. In order to reduce the latency, the

Ethernet frame should be forwarded directly between

Seoul and Inagi in this case. However, if the topology

is changed to connect Seoul and Inagi directly, the

latency to other locations will become higher as the

traffic from Inagi to other locations will be forwarded

via Seoul. Therefore, a Layer 2 network extended

using point-to-point Layer 2 network extension tech-

nologies will always have a high latency path.

Inagi	


Fujisawa	
 Seoul	


4 ms	
 17 ms	


32 ms	


Fig. 2: Example of lower latency via relayed path

2.2 Multi-point Layer 2 Network Extension

Technology

Multi-point Layer 2 network extension technologies

are Layer 2 network extension technologies which are

designed to extend a Layer 2 network to multiple lo-

cations. With multi-point Layer 2 network extension

technologies, Ethernet frames are directly forwarded

to the destination tunnel end point. Therefore, the

latency between the locations will be that of a direct

Internet path.

One example of a multi-point Layer 2 network

extension technology is VXLAN [13]. VXLAN is

proposed mainly by Cisco Systems and VMware.

VXLAN uses IP multicast to forward broadcast

frames and find other tunnel end points. However,

the cost of deploying the same IP multicast group over

the Internet to multiple locations is very high. Also,

the troubleshooting in case of a problem will become

harder when multiple technologies are involved. From

these points, we can say that VXLAN is not designed

to extend a Layer 2 network to multiple locations over

the Internet.

Another example is N2N [14]. N2N is a Layer 2

network extension technology developed by NTOP.

N2N is designed to extend a Layer 2 network to mul-

tiple locations over the Internet. In N2N, there is

a central server called a supernode which is used to

manage the tunnel end points and forward broadcast

frames. However, in N2N, the supernode is a single

point of failure. A service provider often uses mul-

tiple locations to provide fault tolerance. In N2N, if

the location running the supernode fails, the Layer 2

network will stop working.

2.3 Problem with Current Technologies

Current technologies have problems when extend-

ing a Layer 2 network to multiple locations over the



Internet. With point-to-point Layer 2 network exten-

sion technologies, there will be a high latency path

when extended to multiple locations. With multi-

point Layer 2 network extension technologies, there

are problems such as high operation cost and single

point of failures. These problems prevent us from

constructing a stable, low latency Layer 2 network

extended to multiple locations.

Also, all the technologies do not use the lowest la-

tency path when forwarding Ethernet frames. As de-

scribed in Section 1.2, a path relayed by another lo-

cation may have lower latency compared to the direct

Internet path. An example of the described case is

illustrated in Figure 2. A direct path from Fujisawa

to Seoul is 32 ms. By having the traffic relayed via

Inagi, the latency can be reduced to 21 ms. When

forwarding Ethernet frames, if the described path ex-

ists, the tunnel end point should forward it using that

path. However, none of the current technologies can

detect and forward using the lowest latency path.

3 Proposal

In this section, we propose a multi-point Layer 2

network extension technology which can forward Eth-

ernet frames using the lowest latency path and run in

a distributed manner.

3.1 Requirements

The purpose of this research is to reduce the re-

sponse time of a service running on the Layer 2 net-

work extended to multiple geographically distributed

locations over the Internet. Multiple locations are

used by the service provider to provide a service with

fast response time and fault tolerance. We assume the

number of locations to be about a dozen locations. We

assume the locations to be distributed inside a same

geographic region such as Asia and North America.

The requirements for the Layer 2 network extension

technology to be used in the described environment

are the following:

• Extend Layer 2 network to multiple locations

• Select next-hop based on Ethernet frames’ desti-

nation

• Forward using the path with the lowest latency

• Run in a distributed manner

Internet	


Location A	


Location B	
 Location C	


LEON	

Tunnel 
Server	


Host	
  2	
Host	
  1	


LEON	

Tunnel 
Server	


Host	
  4	
Host	
  3	


LEON	

Tunnel 
Server	


Host	
  6	
Host	
  5	


Location D	


LEON	

Tunnel 
Server	


Host	
  8	
Host	
  7	


Tunnel Path	


Fig. 3: Layer 2 Network Topology of LEON

The Layer 2 network extension technology must be

designed to extend a Layer 2 network to multiple loca-

tions distributed over the Internet. When forwarding

Ethernet frames, the Layer 2 network extension tech-

nology must be able to look at the destination host

of the Ethernet frame and determine the destination

tunnel end point. Upon forwarding of the Ethernet

frame, it must be able to select the lowest latency

path in order to make the latency between the loca-

tions as low as possible. These are the requirements

for improving the performance of components and the

response time of a service.

Also, the Layer 2 network extension technology

must run in a distributed manner. Since the service

providers use multiple locations to provide fault tol-

erance, a failure of any location should not effect the

Layer 2 network. To realize this, the Layer 2 network

extension technology must not require any kind of

central server and run in a distributed network model.

3.2 Latency Efficient Overlay Network

We propose Latency Efficient Overlay Network

(=LEON), a multi-point Layer 2 network extension

technology which can forward Ethernet frames us-

ing the lowest latency path and run in a distributed

manner. By using LEON, a service provider can ex-

tend a Layer 2 network to multiple geographically dis-

tributed locations over the Internet. The Ethernet

frames are forwarded using the lowest latency path,

so the response time of the service running on top of

the Layer 2 network will be as fast as possible. Also,

the Layer 2 network will continue to run in case of

complete failure in multiple locations.



An example topology of a Layer 2 network extended

to multiple locations over the Internet using LEON

is illustrated in Figure 3. In each location, there

is a server running LEON. The server is connected

to the Internet and to a local Layer 2 network with

hosts which will be connected to the extended Layer

2 network. LEON will act as a gateway when a local

host and a host in another location communicate.

In LEON, the Ethernet frames can be relayed by an-

other location. Current multi-point Layer 2 network

extension technologies only forward Ethernet frames

directly to the destination. However, in order to for-

ward Ethernet frames using the lowest latency path,

we require the tunnel end points to be able to relay the

Ethernet frames received from other locations. When

LEON receives an Ethernet frame from another loca-

tion, the destination of the Ethernet frame is checked.

If the destination host is not connected to the tunnel

end point, it is relayed to the next hop of the path.

To forward Ethernet frames using the lowest la-

tency path, LEON uses latency as a metric to select

the path. LEON measures the latency between all the

tunnel end points and share the measurement results

with all the tunnel end points. Then, the measure-

ment results are used to select the lowest latency path

using Dijkstra’s shortest path first algorithm.

Also, LEON runs in a distributed manner to pre-

vent single point of failures in the Layer 2 network.

LEON manages the tunnel end points connected to

the Layer 2 network by making the tunnel end point

send control messages such as join and leave to all

the tunnel end points one by one. The tunnel end

point also sends broadcast frames to all the tunnel

end points in the same manner. This removes the

need for IP Multicast or a central server. Therefore,

the Layer 2 network extended using LEON will not

be affected from failure of a location.

By using LEON, a service provider can construct

a latency efficient and fault tolerant Layer 2 net-

work consisting of multiple locations over the Inter-

net. This improves the performance of service’s com-

ponents, which will allow faster processing of requests.

4 Implementation

We implemented LEON on Linux using C. The im-

plementation is an userland application. It creates
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Fig. 4: Join process of a tunnel end point

a TUN/TAP device used to send and receive Eth-

ernet frames. It has been tested to run on Debian

GNU/Linux 6.0.6 and Fedora 17. Also, it has been

tested to run on the Linux Kernel versions 2.6.43,

3.7.2 and 3.7.4.

There are three functions in the implementation: 1.

Distributed Node Management, 2. Lowest Latency

Path Selection and 3. Ethernet Frame Forwarding.

Each of the functions will be explained below.

4.1 Distributed Node Management

To realize the distributed management of the tun-

nel end points, every tunnel end point manages its

own list of all the tunnel end points and uses control

messages to update the list.

When a tunnel end point joins the Layer 2 net-

work, it broadcasts a join message to all the tunnel

end points. The joining process is illustrated in Fig-

ure 4. First, the tunnel end point joining the Layer 2

network retrieves the current list of tunnel end points

from one of the tunnel end points. Then, the new

tunnel end point sends join messages to all the tun-

nel end points on the list. The tunnel end point will

add the new tunnel end point to the list and the new

tunnel end point joins the Layer 2 network.

When the tunnel end point leaves the Layer 2 net-

work, it broadcasts a leave message to all the tunnel

end points. When the tunnel end points receive the

message, it removes the leaving tunnel end point from

the list. Also, it removes all the records related to the

tunnel end point such as list of hosts connected to

the leaving tunnel end point. After the broadcast of

the leave message, the tunnel end point is completely

detached from the Layer 2 network.

Also, in order to detect failure of a tunnel end

point, status of the tunnel end points are periodically

checked. Each tunnel end point sends a ping request

at regular intervals to all the tunnel end points. If
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the tunnel end point doesn’t reply to multiple ping

requests, the tunnel end point is considered as failed.

The tunnel point gets removed from the list and all

the records related to the tunnel end point is removed.

4.2 Lowest Latency Path Selection

When forwarding Ethernet frames, LEON selects

the path with the lowest latency and forwards Ether-

net frames using that path.

In order to select the path with the lowest latency,

a latency database is created on all the tunnel end

points. By querying the latency database, the tunnel

end point can learn the latency between any of the two

tunnel end points connected to the Layer 2 network.

In order to keep the latency database updated, the

latencies between the locations are regularly measured

by running the measurement process on all the tun-

nel end points. The process sends a ping request to

all the tunnel end points on the tunnel end point list.

On receiving ping reply from a tunnel end point, it

will store the latency data in its latency database.

Also, it broadcasts the latency data to all the tun-

nel end points in order to update other tunnel end

points’ latency database. The same copy of the la-

tency database is created on all the tunnel end points.

After the measurement process is finished, the path

selection process will run on all the tunnel end points.

The path selection process calculates the lowest la-

tency path to all the tunnel end points on the tunnel

end point list. The selection process uses Dijkstra’s

algorithm with latency as a metric to calculate the

lowest latency path using the latency database. If the

direct Internet path is the lowest latency path, the

direct path will be selected. If a path relayed by an-

other location is the lowest latency path, the relayed

path will be selected.

4.3 Ethernet Frame Forwarding

LEON forwards Ethernet frames using the lowest

latency path selected using the process described in

Section 4.2. LEON uses a forwarding database and

the path selection results to forward Ethernet frames.

A forwarding database (FDB) is a database of hosts

connected to the Layer 2 network. The FDB keeps

track of which tunnel end point a host is connected to.

From the FDB, the tunnel end point can determine

which tunnel end point the Ethernet frame should be

forwarded to. Each tunnel end point has an FDB and

manages it.

The FDB is updated using incoming Ethernet

frames from other tunnel end points of the Layer 2

network. When a tunnel end point receives an Ether-

net frame from another tunnel end point, it checks the

source host of the Ethernet frame and the source tun-

nel end point. If the source host is not registered in

the FDB or if the Ethernet frame came from a tunnel

end point which is different from the one on the FDB,

the FDB is updated. This will keep the FDB updated

on which tunnel end point a host is connected to.

When forwarding an Ethernet frame, the tunnel end

point checks the destination MAC address of the Eth-

ernet frame and decides how to handle it. If the des-

tination MAC address is either a broadcast MAC ad-

dress or a multicast MAC address, it is handled as a

broadcast frame. If it’s not either of them, the desti-

nation MAC address of the Ethernet frame is looked

up in the FDB. If the destination MAC address is

found in the FDB, it is handled as an unicast frame.

If the destination MAC address is not found in the

FDB, it is handled as a broadcast frame.

Unicast frames are encapsulated and forwarded to

the destination tunnel end point using the lowest la-

tency path. The tunnel end point identifies the des-

tination tunnel end point by looking up the destina-

tion MAC address of the Ethernet frame in the FDB.

Then, the shortest latency path to the destination

is selected. After the path is selected, the Ethernet

frame is encapsulated in an IP header and a LEON

header. The LEON header contains the forwarding

path information for the Ethernet frame. All the re-

laying tunnel end point’s IP address and port number

and the destination tunnel end point’s IP address and

port number is listed in the LEON header. Lastly, the

encapsulated Ethernet frame is forwarded to the next

hop of the selected path.

Broadcast frames are encapsulated and forwarded

to all the tunnel end points. The tunnel end point

selects each tunnel end point in the tunnel end point

list as a destination. The shortest latency path to the

destination is selected. Then, the Ethernet frame will

be encapsulated and forwarded to the destination as it

would do for unicast frames. This process is repeated

for all the tunnel end points in the list.
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When a tunnel end point receives an encapsulated

Ethernet frame, it checks its LEON header. If the

tunnel end point it is the destination tunnel end point,

it will forward the Ethernet frame to the local Layer 2

network and updates FDB if necessary. If the tunnel

end point is not the destination tunnel end point, it

will relay the Ethernet frame to the tunnel end point

listed after itself in the LEON header.

5 Evaluation

LEON forwards Ethernet frames using the lowest

latency path. In cases where a path with latency lower

than a direct Internet path exists, LEON will use the

lower latency path to forward the Ethernet frame. By

using LEON in such cases, the performance of the

components improves, which allows faster processing

of the requests to a service. This will result in better

response time of a service.

For evaluation, we assumed WIDE Cloud as a ser-

vice constructed on top of the Layer 2 network ex-

tended using LEON. One of the components in WIDE

Cloud which is affected by high latency is the storage

server. The storage server provides the storage area

of the virtual machines to the hypervisor using the

NFSv3 protocol. All the virtual machine’s disk trans-

actions are processed over the Layer 2 network. By

using LEON, the performance of the storage server

is expected to improve. This enables faster access to

the data required to provide a service inside the vir-

tual machine resulting in better response time of the

virtual machine.

To evaluate this, we measured the following:

• File system performance of NFSv3

• Linux Kernel compile time inside a VM

First, we measured the file system performance of

NFSv3. By using LEON in an environment with

a lower latency path than the direct Internet path,

LEON will forward Ethernet frames using the lower

latency path. In such an environment, we expect to

see an increase in performance of NFSv3 compared to

using it directly over the Internet. We evaluate this

by comparing the performance of NFSv3 when used

over LEON and when used directly over the Internet.

Secondly, we measured the compile time of the

Linux Kernel on a virtual machine using the same

WIDE (AS 2500)	


SAKURA (AS 9370)	

KDDI (AS 2516)	


Server1 (Fujisawa)	


NFSv3	
  

LEON	


Server2 (Tokyo)	
 Server3 (Tokyo)	


LEON	


LEON	


11 ms	


2 ms	


1 ms	


VM	
  

3 ms	
 11 ms	


Fig. 5: Environment used for evaluation

Host CPU RAM NIC

Server 1 Intel Xeon 12GB NetXtreme II

(Fujisawa) L5520 2.27GHz BCM5709

(8 cores)

Server 2 AMD Phenom 2GB virtio

(Tokyo) 9550 2.20GHz

(2 cores)

Server 3 Intel i7 870 16GB Intel 82574L

(Tokyo) 2.93GHz

(4 cores)

Table 1: Specification of the servers

setup. If the performance of NFSv3 is improved, the

disk access performance will improve, allowing faster

processing of the compile request.

5.1 Environment

For evaluation, we measured the performance of a

component running on top of LEON and the perfor-

mance of a service using that component. LEON for-

wards Ethernet frames via another location when the

path relayed by another location has lower latency

than the direct Internet path. As an evaluation, we

evaluate whether the performance of a service and its

component improves by using the relayed path. To

evaluate this, the following are required in the evalu-

ation environment:

• Measurement on the real Internet

• A relay path with lower latency than the direct

Internet path

As an evaluation environment, we deployed a copy

of WIDE Cloud with the components connected over a

Layer 2 network extended using LEON. The topology
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Host OS Kernel

Server 1 Debian GNU/Linux 3.7.2

(Fujisawa) 6.0.6 (Squeeze)

Server 2 Fedora 17 3.7.4-204

(Tokyo)

Server 3 Fedora 15 2.6.43.8-1

(Tokyo)

Table 2: Software versions of the servers

of the deployed evaluation environment is illustrated

in Figure 5. We deployed 3 servers in 3 different dif-

ferent locations. All the servers are connected to dif-

ferent AS networks. The specifications of the servers

are shown in Table 1. Also, the software versions

used on the servers are shown in Table 2. Server 1

acts as the storage server and Server 3 acts as the hy-

pervisor of WIDE Cloud. A virtual machine runs on

Server 3 using the disk image located inside Server 1’s

storage area, which is exported using NFSv3.

A lower latency path than the direct Internet

path exists in this evaluation environment. Server

1 is a server connected to WIDE Project’s network

(AS2500) [15]. Server 2 is a virtual machine pro-

vided by KDDI Web Communications [16]. It is con-

nected to KDDI’s network (AS2516). Server 3 is a

server connected using EditNet’s Internet connection

service over NTT East’s Flet’s Hikari Next access line

[17]. EditNet uses Sakura Internet (AS9370) [18] as

their backbone [17]. Although all the servers are lo-

cated in the same geographic region, since AS2500

and AS9370 are peered in Osaka, Japan, the latency

between Server 1 and Server 3 is high. However, as

AS2500 and AS2516 are peered in Tokyo, Japan and

AS2516 and AS9370 are also peered in Tokyo, Japan,

by having the traffic relayed by Server 2, the latency

between Server 1 and Server 3 can be reduced. By

running LEON on these 3 servers, this path will be

detected and Ethernet frames from Server 1 to Server

3 will be forwarded via Server 2.

Using the 3 servers described above, we constructed

an environment which meets the requirements.

5.2 Experimental Procedure

For evaluation, we measured the filesystem perfor-

mance of NFSv3 and compile time of Linux Kernel

read write

(KB/sec) (KB/sec)

Direct 4537 5372

LEON 4726 5198

Table 3: Performance of sequential access file opera-

tions in Bonnie++ over NFSv3

seek create info delete

(/sec) (/sec) (/sec) (/sec)

Direct 2985 23 46 46

LEON 8417 65 132 132

Table 4: Performance of random access file operations

in Bonnie++ over NFSv3

inside a virtual machine. We used the environment

described in Section 5.1 for the measurement. We

ran the measurement in two different situations. One

is a situation where storage server is directly mounted

over the Internet. The second is a situation where

storage server is mounted over a Layer 2 network ex-

tended using LEON. We compared the performance

in these two situations.

We measured the filesystem performance of NFSv3

using Bonnie++ [19]. Bonnie++ is a filesystem

benchmarking utility created by Russel Coker. We

mounted Server 1’s storage area on Server 3 using

NFSv3. Then, we ran Bonnie++ on Server 3 to mea-

sure sequential access performance and random access

performance of the exported storage area.

Next, we measured the compile time of Linux Ker-

nel. We ran a virtual machine on Server 3 using

Kernel-based Virtual Machine (=KVM) [20] as a hy-

pervisor technology. The disk image of the virtual

machine is stored on Server 1’s storage area and the

disk image is accessed using NFSv3. We compiled

Linux Kernel inside a virtual machine and used the

time command to measure compile time.

5.3 Experimental Results

First, we measured the filesystem performance of

NFSv3. The measurement results of sequential access

performance is shown in Table 3. Also, the measure-

ment results of random access performance is shown

in Table 4. Each measurement has been done 3 times

and the results shown are the average values.
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Compile Time (min)

Direct 78.9

LEON 58.8

Table 5: Compile time of Linux Kernel

As we can see from the results of sequential ac-

cess performance, there was a little difference between

the two situations. In a situation where the storage

server was directly mounted, the performance of se-

quential read access was 4537KB/sec and the perfor-

mance of sequential write access was 5372KB/sec. On

the other hand, in a situation where the storage server

was mounted over a Layer 2 network extended using

LEON, the performance of sequential read access was

4726KB/sec and the performance of sequential write

access was 5198KB/sec. From these results, we can

see that the performance of sequential access is not

greatly effected by using LEON.

Meanwhile, from the results of random access per-

formance, there was a large difference between the two

situations. In a situation where the storage server was

directly mounted, the performance of seek operations

was 2985 ops/sec, the performance of create opera-

tions was 23 ops/sec, the performance of info oper-

ations was 46 ops/sec and the performance of delete

operations was 46 ops/sec. On the other hand, in a

situation where the storage server was mounted over

a Layer 2 network extended using LEON, the per-

formance of seek operations was 8417 ops/sec, the

performance of create operations was 65 ops/sec, the

performance of info operations was 132 ops/sec and

the performance of delete operations was 132 ops/sec.

From these results, we can see that by using LEON,

we can achieve about 3 times the performance of the

direct mount case in the evaluation environment.

Next, we measured the compile time of Linux Ker-

nel inside a virtual machine with its disk image on

the storage server. The results are shown in Table 5.

In a situation where the storage server was directly

mounted, it took 78.9 minutes to compile. On the

other hand, in a situation where the storage server

was mounted over a Layer 2 network extended using

LEON, it took 58.8 minutes to compile. From the re-

sult, we can see that by using LEON, compile time

was reduced by 20 minutes.

5.4 Discussion

From the results of NFSv3’s filesystem perfor-

mance, we saw an improvement in random access per-

formance by using LEON. However, we could not see

an improvement in sequential access performance. We

assume that this is because the sequential access per-

formance is dependent of throughtput and not the

latency. In the evaluation environment, the Internet

connection of the server connected using the Flet’s

Hikari Next access line was narrow compared to the

other 2 servers. This Internet connection became a

bottleneck in throughput and the sequential access

performance did not improve. On the other hand,

random access performance improved as the number

of operation requests a server can send in a second has

increased due to lower latency between the servers.

From the results, we can say that the performance of

a component has improved by using LEON.

Also, from the results of compile time of Linux Ker-

nel, we saw an improvement in compile speed. We

assume that there are many random access to the

disk image during the compile process. As the ran-

dom access performance improved, it enabled faster

processing of the compiling process. This resulted in

improvement of the compile time. From this result,

we can say that the performance of a service has im-

proved by using LEON.

From the experiments conducted, we can say that

the response time of a service improves by using

LEON. The performance of a component running on a

Layer 2 network extended using LEON improves when

there is a lower latency path than the direct Internet

path. By using a lower latency path, the performance

of latency dependent components inside a service im-

proves. This enables faster processing of requests and

as a result, the response time of a service improves.

6 Conclusions

In this research, we implemented and evaluated

LEON, which is a multi-point Layer 2 network exten-

sion technology capable of extending a Layer 2 net-

work to multiple geographically distributed locations

on the Internet. On the Internet, there are many sit-

uations where a path relayed by another location has

lower latency than the direct Internet path. LEON

measures the latency between the locations and uses
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the latency data to select the path with lowest latency.

LEON uses the selected path for forwarding Ethernet

frames. By using LEON, we saw an improvement in

performance of latency dependent components in en-

vironments with a lower latency path than the direct

Internet path. The improvement of the component’s

performance enabled faster processing of the request

and improved service’s response time.
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