Overview

In recent years, dynamic server consolidation with live VM (Virtual Machine) migration is one of the hot topics in the system software area [5, 1]. By exploiting live migration, it is possible to realize over-commit assignments of VMs for improving resource usage. If VMs are not consuming their assured amounts of computing resources, these VMs are migrated into fewer physical nodes to reduce necessary physical nodes.

To the best of our knowledge, however, those studies rely on precopy live migration mechanisms, which are already available in widely-used VM monitors. We consider such precopy live migration is not suitable for dynamic consolidation systems; because it takes long time to switch the execution host of a running VM, and it is hard to estimate when migration is completed. In precopy live migration, memory pages, being intensively updated by a guest OS at a source host, need to be iteratively copied to a new execution host, before the execution host is switched.

On the other hand, postcopy live migration postpones memory page copies after the execution host is switched; it is possible to change the execution host in several hundred milliseconds, and live migration is completed in a deterministic period. For dynamic consolidation systems, postcopy live migration will greatly contribute to relocating VMs on overloaded hosts with minimum latency. There are research papers focusing on postcopy migration mechanisms[2, 4], however, which do not discuss the effectiveness of postcopy for dynamic VM consolidation.

In our ongoing project, we are now developing a new VM consolidation system that is based on our postcopy migration mechanism [3, 6, 7]. The results of preliminary experiments will be presented in the poster session, in which pre/postcopy-based consolidation systems are compared at the viewpoint of performance guarantees and power savings.

Demonstration

The prototype system in our laboratory will demonstrated through the Internet. The system dynamically optimizes the locations of VMs in response to the number of client requests, so that minimizes power-on physical hosts and assures VM performance guarantees.

參考文献


