
A framework for distributed storage

Jean Lorchat
Internet Initiative Japan
Email: jean@iijlab.net

October 7, 2009

1 Introduction

Recent trends in consumer grade computing and
entertainment, as well as technological break-
through with respect to digital contents, have
led users to own a large amount of data, with-
out proper backup means or storage manage-
ment (e.g. how can a user increase his storage
capacity easily ?).

Indeed, current available products either hard-
ware or software, rely on a number of assump-
tions such as the availability of a high band-
width local area network dedicated to storage
devices [1, 2], or even purchasing expensive inte-
grated solution devices.

We wanted to introduce a framework that al-
lows users to manage all their data by themselves
at all time, provided they own all the servers par-
ticipating in the architecture. This framework
can be used by single individuals as well as large
Internet service providers, since it is very scal-
able with respect to number of users.

2 Modular three layers archi-
tecture

In order to create a such framework, it seems
beneficial to split data and meta-data informa-

tion. Then, different entities handle each type
of information at different layers. The entity
responsible for storing file data is called a disk
server, while the meta server handles meta-data
from classical UNIX-like attributes to user de-
fined tags and categories.

In addition to meta-data information, meta
servers also handle storage-wide area mapping,
which allows them to tell to connecting clients
where the resources they are looking for is lo-
cated. This is especially important because files
will be split into fixed size blocks, which pro-
vide a vey fine granularity for operations such as
replication and parallel I/O.

In this situation, lots of scenarios can be imag-
ined, that combine all kind of pieces of informa-
tion extracted from different contexts to achieve
the features being wished for by the users of the
storage system. For example, we can envision
implementations that favor latency, or perfor-
mance, or load-sharing, or even redundancy.

In an opposite fashion, the disk server is
merely a large disk array under the supervi-
sion control of a single computer that must be
able to address simple read and write requests
from client entities, or from meta servers moving
data around to achieve their higher-level storage
strategy.

1

― 110 ―

Internet Conference 2009 ― Work in Progress



Figure 1: Framework architecture diagram

Consequently, the last entity is the client. A
client is any kind of application, either modi-
fied to access the framework or created with the
framework in mind. Since the storage system is
not a real filesystem, it does not provide POSIX
compliant semantics that would allow a seam-
less mounting within the user filesystem tree. It
is thus necessary to resort to a separate API that
is different from the usual filesystem API, even
networked ones. This is caused by the highly dis-
tributed nature of the storage system, and in or-
der to achieve the highest possible performance
with a such setting. By adding a filesystem
compatible abstraction on top of the framework,
we also introduce a large potentially useless and
wasteful overhead, impairing performance.

These three entities are pictured in Figure.1
with their relationships and the involved proto-
cols.

3 Query mechanism

When the client application needs to access data,
it must first obtain a connection to one of the
meta servers. Only these servers are able to lo-
cate the data among the various disk servers.

After initiating the connection, the client tells
the server which resource it is looking for. Af-
ter checking the resource, the meta server de-
cides which of the possible locations should be
returned, based on all kind of policies. Such
policies can be used to filter out overloaded disk
servers, increase reliability, and so on.

4 Conclusion

This architecture framework is still very much a
work in progress and has a lot of room for im-
provement, while lacking features at the same
time. Our future works related to this architec-
ture is to prepare a proof of concept implemen-
tation that can be used to validate the system.

Once the prototype is ready, meta server plu-
gins should be written to evaluate different sce-
narios and see if the framework can really adapt
to various kind of situations.

Eventually, among the highly wanted upcom-
ing features within the framework, we can cite
access control, privacy, data consistency and
asynchronous operation.

But the key feature that motivated to start
this work has been the ability to create a dis-
tributed storage covering a very wide area, as
opposed to site-wide products.

References

[1] S. Shepler, M. Eisler, and D. Noveck, “NFS
version 4 minor version 1,” Dec 2008.

[2] Danga Interactive, “MogileFS,” Available
online at http://www.danga.com/mogilefs/.

2

― 111 ―

Internet Conference 2009 ― Work in Progress




