
Flash Crowds Alleviation via Dynamic
Adaptive Network

Chenyu Pan† Merdan Atajanov† Toshihiko Shimokawa‡ Norihiko Yoshida†

Abstract: Given the increase in frequency and overall unpredictability, flash crowds have been
the bane on internet website. This paper introduces FCAN, a flexibly adaptive network built
on cache proxy server layer, transiting architecture between C/S and P2P mode according
to the real-time network traffics, as a possible approach to address the flash crowds. The
paper concludes the characteristics of flash crowds, describes the design idea and overviews its
implementation issues.
Keywords: Internet Load Distribution, Flash Crowds, Content Delivery Networks, Peer-to-
Peer Systems

1. Introduction
A flash crowd is a sudden surge in the volume of

request rates to a particular web site that causes
the site to be virtually unreachable. Given the in-
crease in frequency and overall unpredictability, it
has been the bane on internet website. Former re-
searches against flash crowds include solutions us-
ing CDN [1, 2], P2P overlay [3, 4] or web caching
[5, 6, 7]. However, some of these solutions are ex-
pensive and some may work fine only during flash
crowds but have overheads which cannot be ne-
glected under normal network condition.

Our idea is to build a self-tuning adaptive net-
work, FCAN [8], which dynamically transits the
architecture between anti-flash-crowds status and
non-flash-crowds status as a possible approach to
minimize the overheads. We employ an Internet-
wide infrastructure of cache proxy servers to per-
form peer-to-peer functions in dealing with the
flash crowds effects and get it out of the way when
normal client/server architecture works well.

FCAN has been previously introduced elsewhere
[8]. As an updated and improved version, this pa-
per modifies the base architecture of FCAN by in-
troducing volunteer clients as peer members to as-
sist P2P functions. Moreover, the paper goes in
depth to discuss the FCAN protocols and takes the
consideration of retrieving unpopular objects dur-
ing flash crowds.

The rest of the paper proceeds as follows: Section
2 takes a closer look at the nature of flash crowds.
Section 3 presents the overall design in detail. We
overview its implementation issues in Section 4, and

discuss the protocol design in Section 5. Consider-
ations are taken in Section 6 and related works are
shown in Section 7. And the last is the conclusion
and future works.

2. Characteristics of Flash Crowds
Through the traces conducted in previous re-

searches [2, 4, 6], we conclude some significant char-
acteristics of flash crowds as listed below.

1. Sudden events of great interests, whether
planned or unplanned, such as links from pop-
ular web sites (i.e. Slashdot effect) or breaking
news stories (ex. Sep. 11th terrorist attack),
trigger flash crowds.

2. Requests volume for the popular objects in-
creases dramatically to tens or hundreds times
more than normal, which is far beyond the
capacity of normal web servers and pushes
servers’ availability down close to 0%.

3. The increase of the request rate is dramatic
but relatively in short duration. Thus, tradi-
tional over-provision to handle the peak load
may result servers stay practically idle most of
the time.

4. Requests volume increases, while rapid, is far
from instantaneous. In play-along [2] cases,
the rate increase occurs gradually over the 15-
minute interval. This gives the time for a sys-
tem to detect a flash crowd before it reaches
its peak.



5. CPU resources as well as the network band-
width are the primary constraints bottleneck
during a flash crowd. We must observe not
only the server load but also the whole net-
work performance.

6. The distribution of requested objects is Zipf-
like. The number of clients is commensurate
with the request rate. This is a big difference
to rule out the DoS attack from flash crowds
[2].

7. A small number of objects, less than 10%, is
responsible for a large percentage of requests,
more than 90%. This is a promising result
indicating that caching of these documents
might be a possible solution.

8. Over 60% of objects are accessed only during
flash crowd. It implies normal web caches may
not have these objects at the beginning of the
flash crowd.

3. Design of FCAN
Generally speaking, current possible solutions

against flash crowds can be divided into three cat-
egories: server-layer, client-layer and intermediate-
layer solutions, according to a typical architecture
of network.

Server-layer solutions are straight-forward but
costly approaches. They extend object’s availabil-
ity either by over provision of the server and net-
work based on peak demand or by CDN to increase
server locations in advance. However, almost all the
surrogate servers would stay idle during the normal
(or peaceful) periods without any flash crowds, i.e.
most of the time.

An alternative is to let the clients share the pop-
ular objects among themselves, forming client-side
P2P overlay. However, this kind of solutions is not
transparent to the end users and remains low effi-
ciency when the demands of hot objects decrease
[3].

Our design is an intermediate-layer solution. We
focus on a P2P-based cache proxy server layer. A
group of forward cache proxies is organized into
a temporary and wide-area-based layer of reverse
cache proxy in our design. Hot objects requested
during a flash crowd are cached in this layer and de-
livered to end users after conducting P2P searches
within the layer. In addition, we welcome the

Server  

CP1 CP3 CP2 

Server  

Cache Proxy Cloud 

CP3 

a) non-flash-crowd                                                   b) anti-flash-crowd

C1 C2 C3 C4 C5 C1 C2 C4 C5

Figure 1: Changing Architectures of FCAN

clients who voluntarily share their resource as a
peer member on the purpose of assisting the system
providing better service. Besides, to minimize the
overheads caused by P2P functions, FCAN tunes
the network to be adaptive by invoking P2P mode
only when the C/S mode fails to fulfill the increas-
ing requests. Three advantages can be seen from
this schema.

1. No need of participations from end users. All
operations are transparent to the end users.
Although the volunteer clients are aware of the
existance of FCAN, from the perspective of the
end users, they belong to the system.

2. No extra hardware investment. Cache proxies
are widely deployed on the Internet. We put
special wrappers on these already existed re-
sources to avoid unjustified hardware over pro-
vision.

3. Easy control and management. Cache prox-
ies are managed by network administrators. It
must be easier to deploy P2P functions com-
pared with uncontrollable and heterogeneous
clients of the end users.

3.1 Basic Operation
Figure 1 illustrates how FCAN alleviates the

symptoms associated with flash crowds. The server
who want to be alliviated from flash crowds is
called Member Server. And Member Peers con-
sist of Member Cache Proxies (Member CPs) and
volunteer clients. Both Member Server and Mem-
ber Peers (CP1, CP2, C3) are shown in deep color
to dinstinguish from other clients who connect to
the web server directly or through common cache
proxy.



TTL                      TTL-1

      
    
      Object Return

 CP

 CP  

C 

Request
                    Reply

C 

Figure 2: Scoped Search

CP  CP  

Server  

CP  

push

Cache Proxy Cloud

C 

Figure 3: Push Service

In peaceful time, the typical client/server archi-
tecture satisfies most of the client requests. Mem-
ber Server and Member Peers do little more than
what normal ones do. Once a flash crowd comes,
Member Server detects the increase in traffic load.
It triggers all Member Peers to form P2P over-
lay, the cache proxy cloud shown in Figure 1 (b),
through which all requests are conducted instead
of bugging the origin server. Moreover, all subse-
quent client requests are redirected to this cloud
by DNS redirection automatically. In the follow-
ing subsections, we present the design detail of the
P2P-based cache proxy cloud, DNS redirection and
dynamic transition.

3.2 Cache Proxy Cloud

Cache proxy cloud is a quick-formed P2P overlay
conducted by all Member Peers. A quick-formed
P2P overlay has the features of being simple and
lightweight. It can be quickly started and stopped
with the change of the network traffics.

Currently P2P system has evolved from first gen-
eration to second generation. The first generation
P2P systems use simple scoped search to locate ob-
jects, thus an object is equally likely to be avail-
able at any node within the P2P overlay. In con-
trast, the second generation systems, using a vari-
ety of distributed hash tables, assign each object
to a particular set of nodes in the overlay. Put in
other words, the second generation systems should
be well-organized.

However, the contents a cache proxy stores are
determined randomly by client requests. They can-
not be pre-determined or well-organized with hash
tables in advance. Moreover, although the second
generation systems save considerable traffic used
for searching unpopular objects (the level of search-
ing efficiency is O(log n) vs. O(n), against the first
generation systems), mathematical and simulation
analysis in [9] shows that the searches of the first

generation P2P systems can be designed to have
low expected traffic requirements and low latency
when searching for objects that are the interest of
a flash crowd. Therefore, a lightweight and simple
P2P system with the features of first generation is
more suitable for FCAN in this context.

In FCAN, each Member CP is primarily a reg-
ular cache proxy server during its normal mode of
operation. It serves a fixed set of users in usual
time but serves the requests arriving at the cloud
from any user during the anti-flash-crowd status.

Through normal communication processes,
Member Peers notify their existence to Member
Server and Member Server is able to send/restore
the alarm of a coming flash crowd to the corre-
sponding Member Peers. Once a Member Peer
receives the alarm, it begins to find nearest neigh-
bors using neighbor lists received from Member
server to form a self-organized P2P overlay. Then
Member CP conducts the requests either from
client users or neighbor peers, while volunteer
client only conducts the requests from neighbor
peers or it self. If the requested hot object is
found, Member Peers returns the object to the
requester, otherwise delivers the scoped search
query to its neighbors with a decreased TTL time
(See Figure 2).

We also notice that over 60% of objects are new
to a flash crowd, they may not been cached at the
beginning stage. Thus, we employ a “push” ser-
vice as a supplementary to improve the P2P search
efficiency (See Figure 3). Member Server has its
file access references and trace histories of Member
Peers. When there is a flash crowd for specified
objects which have not been accessed by Member
Peers, it pushes these objects to the P2P cloud by
connecting to just one or two Member Peers. The
delivered objects will soon be propagated in the
cloud because of the P2P functions and the high



DNS  

DNS  C 

Propagated
 

  DNS  

CP  

Server

Figure 4: DNS Propagation

demands.
3.3 Dynamic DNS redirection

To protect server and network from overload,
flooded requests must be redirected to the cache
proxy cloud.

A front-end load balancer is a basic mechanism
that the Internet uses to realize the client routing.
It intercepts all communications from the clients
and relays them to the appropriate destination.
However, increasing congestion on network paths
suffering from flash crowd impedes the client re-
quests reaching the load balancer. It also incurs
“a single point of failure” problem once the load
balancer collapses. Hence, what we need is an
approach that requires little participation of the
server side.

Dynamic DNS redirection helps us to achieve the
goal. It gives out the address of the cache proxy
cloud instead of the origin server address when
a client tries to resolve its name through a DNS
server. The address of cache proxy cloud can be
any address of Member CPs. Since once being redi-
rected to one of Member Peers, client can utilize the
whole P2P-based cache proxy cloud to complete the
request.

As Figure 4 shows, we use special DNS server on
server side which allows DNS lookup entries to be
modified without shutdown of DNS service. Mem-
ber Server determines when to modify the entries
address and when to restore it back. Once being
modified, the new DNS entries wait for being prop-
agated through the Internet.
3.4 Transition of Network

Here comes the question when and how to transit
the network architecture?

Each Member Server and Member Peer observes
its load information. Member Server is responsible
for detecting the forthcoming of a flash crowd. It
observes the volume of server load and the slope

of the tangent line for that load curve. Once a
great Shock Level [6] increase exceeds to a prede-
fined threshold in the past δ seconds, FCAN treats
it as a coming flash crowd. It sends the alarm to all
Member Peers to transit into anti-flash-crowd sta-
tus and pushes un-cached objects with other nec-
essary information, such as neighbor lists, related
objects list and etc. to the cloud. After that, it
modifies the DNS lookup entries of the web site
address to some of the Member CPs’ and waits for
new addresses being propagated through the Inter-
net. As a result, DNS gradually redirects subse-
quent requests from the server to the cache proxy
cloud and makes load distribution inside the cloud.

During the anti-flash-crowd status, Member
server observes the traffic level on each Member
Peers. Upon detecting the average load decreases
under the pre-defined threshold in the past δ sec-
onds, FCAN treats it as the leaving of the flash
crowd. Member Server restores the DNS lookup
entries and notifies all Member Peers to stop P2P
search. Then, everything is back to normal.

4. Implementation Overview
We put special wrappers on normal cache prox-

ies and employ special DNS Server to form FCAN
network system.

The implementation of wrappers on Member
Peers consists of two main parts. One is P2P
overlay construction. As discussed in section 3.2,
FCAN needs a first generation P2P system to carry
out the cache proxy cloud. After a series of study,
we have adopted PROOFS system presented in [3]
as the best suitable schema. PROOFS is a simple,
lightweight and naturally robust approach. It shuf-
fles peer neighbors to achieve the randomness of
P2P overlay and uses scoped search to deliver ob-
jects atop that overlay. Using random technology,
it doesn’t require heavy pre-configuration which al-
lows quick start and stop. It locates objects effi-
ciently since each search is randomized, even the
first few hops of the new query can reach the ob-
jects. Besides, relying on randomness, PROOFS
can achieve low latency delivery, even when peers
dynamically join/leave the overlay with time and
when there exists peers that limit their participa-
tion. However, this simple searching algorithm in-
curs flooding problem when searching for unpop-
ular objects. We offset this weakness by invoking
PROOFS only for the duration when the searching



object is heavily demanded.
Another part of Member Peer wrapper is load ob-

servation. Load observation reports the real time
load on Member Peer to the Member Server with
attempt to assist the Member Server calculating
the whole traffic level of network. Load observa-
tion uses IP address instead of http domain name
to communicate between Member CP and Member
Server. That is to avoid the infinite loop once DNS
server entries have been modified.

We adopt TENBIN system [10] to implement
the special DNS server. TENBIN is our research
product, and already used in practice, for example,
“Ring Servers” and “LIVE! ECLIPSE” projects
[11]. It works as a special DNS Server, intercepting
the client name requests, and returning the optimal
IP address under a given policy. With TENBIN, we
can dynamically modify DNS lookup entries to re-
alize client redirection and config special policy to
achieve load balance among P2P cloud. The details
of TENBIN have already been presented elsewhere
[10, 11].

5. Protocol Design
In this section, we introduce the design of FCAN

protocol. There are two steps in protocl design:
one deals with application concerns, which ab-
stracts away from the structuring and represen-
tation of protocol information; another deals with
data transfer concerns, which aims at the provision
of the reliable data transfer and takes possible loss
of data into account. We describe the FCAN pro-
tocols with the emphasis on application level and
assume the availability of a reliable data transfer
service. Since the formatting and coding of the
protocol information is potentially complex, it isn’t
included in this paper due to the insufficient space.

Table 1 lists the basic service protocols of FCAN
from the application perspective. The first two al-
phabets stand for the service-calling entity and the
service-called entity respectively, where “P” repre-
sents for Member Peer, “S” represents for Member
Server and “D” represents for special DNS server.

In the following, we show 3 sample scenario cases
with sequence diagrams to illustrate how some of
the above protocols function.

Case 1: Member Register
During normal cache process, Member CP reg-

isters itself to Member server. When it receives
a client request and finds cache MISS, it checks

Table 1: FCAN Basic Service Protocols
ID Name Description

PS001 Peer reg-

ister

Peer sends register informa-

tion. Once successfully reg-

istered, it receives a Peer ID

from Member server.

PS002 Peer up-

date

Peer sends updated register

information with a unique

Peer ID received from server.

PS003 Peer lo-

gout

Peer explicitly states to

leave.

PS004 Load re-

port

Peer reports its load infor-

mation to server periodically.

PP001 Neighbor

shuffle

Peers change neighbor list

among the P2P cloud. The

initial neighbor list is from

Member Server.

PP002 Object

search

Peers conduct TTL scoped

search among the P2P cloud.

SP001 Cloud

combine

Server sends alarm to all reg-

istered peers each with an

initial neighbor list.

SP002 Cloud

dismiss

Server sends restore com-

mand to all registered peers

to stop P2P function.

SP003 Object

push

Server pushes flash crowd re-

lated objects to one of the

peers.

SP004 Server

logout

Server explicitly states to

leave

SD001 Entry

change

Server notifies DNS to

change the server entry with

specified IP addresses.

whether requested host name is a Member Server, if
not, forwards the http request with special tag that
states itself a Member Peer. If the URL referred
web server is a Member Server, it prompts Mem-
ber Peer to send peer information using “PS001”
protocol otherwise it discards that special tag (See
Figure 5). If Member Server has already registered
in Member Peer’s local DB, that means this cou-
ple of peer and server has recognized before, peer
does not send special tag unless it wants to update
information on server side.

The situation of volunteer client is almost the
same. The difference is Member Peer in this con-



 

1. I am a Member Peer. Are you 
a Member Server?  

2. Check local 
DB whether 
registered? If 
not, then 3. 

3. Yes, your information, 
please. 

Member Peer Member Server 

4. Detail Member Information 

5. Success acknowledgement. 

3. Register 
peer info. in 
local DB. 

6. Register 
server info. 
in local DB. 

Note: 
l  Peer information at least includes: machine name, machine 

IP address, machine type (cache proxy or client),  
l  Sever information at least includes: host name, IP address. 

Figure 5: Member Register

 

1. Detect the 
coming of a 
flash crowd 

Member Server Member Peers 

2. Send alarm 

5. Modify DNS 
entries. 

4. Push hot 
objects, object list, 
neighbor list 

Special DNS 

3. Acknowledged 

6. Start shuffling 
and wait to 
conduct search 
requests. 

Figure 6: Transisting to anti-flash-crowds status

text initiates URL request itself not from other
clients.

Case 2: Anti-flash-crowds Status
Once Member Peer and Server know each other

after register, they are ready for facing flash crowds.
Figure 6 shows the protocol information exchanges
between entities when transisting to anti-flash-
crowd status. Member Server detects the coming
of a flash crowd and uses “SP001” protocol to send
alarm for combining P2P cloud. With “SP003” it
pushes hot objects and other necessary information
to the cloud and with “SD001” it changes the DNS
entries.

Case 3: Locate Object
During anti-flash-crowd status, Member Peers

keep on shuffling neighbor lists using “PP001” pro-
tocol and wait for the request search. Peers talk
“PP002” protocol to locate object among P2P
cloud as Figure 7 shows.

6. Considerations

6.1 DNS Propagation

DNS acts an important role in FCAN. We rely
on dynamic DNS redirection to realize the client
routing. Thus, the time for a new DNS entry
being propagated through Internet is essential to
FCAN. We have obtained several experiences on
DNS propagation from experiments and practical
use of TENBIN, and they confirm our design.

6.2 Unpopular Objects
FCAN uses “push” service to guarantee that

each request for the flash crowd related objects can
be resolved. However, requests for unpopular ob-
jects from the same target server may not be satis-
fied since DNS entries is modified under anti-flash-
crowd mode. Requests for those cold objects will
be redirected to the origin server by Member Peers
either after a certain period of TTL with no object
return or after finding no record on a global list of
hot objects before starting scoped search.
6.3 Mixed-Mode Operations

In reality, each cache proxy serves for several con-
tent servers, and there is a case that any server
suffers from flash crowds while the others do not.
Therefore, each Member CP has the functionality
of mixed-mode operations for the normal C/S mode
and the anti-flash-crowds P2P mode. The modes
are switched according to requested contents.
6.4 Network Deployment

FCAN needs an infrastructure support for widely
distributed caching. We require the collaboration
of network administrators when deploy the system
across the Internet. However, we argue that gain-
ing the cooperation from network administrators is
much easier than from unknown clients. Moreover,
since P2P infrastructure allows dynamic join/leave,
the peer members are free and flexible to partici-
pate on different levels, which better benifits the



 Client Member Peer 

1. Request 
URL 

7. Object 
return 

2. Has object? 
No then 3. 

Member Peer 

3. Does the required host 
name refer to registered 
Member Server and now is it 
anti-flash-crowd status for 
that server? Yes, then 4 
4. Pick up one neighbor 
forward request with a TTL 
time out. 

5. Has object? 
Yes then 6. 
If no and TTL 
is positive, it 
forwards 
request to one 
of its 
neighbor with 
TTL-1 

6. Object return 

Figure 7: Scoped Search

deployment to some extend.

7. Related Works

The idea of flash crowd alleviation via build-
ing self-organized P2P overlay was previously de-
scribed in [3, 4, 7]. We use results from that area
extensively. However, these solutions mainly rely
on the client-side cooperation. They have to be de-
ployed on user’s desktop which cannot be accepted
in some occasions. And some lacks of adaptive abil-
ity while facing the leaving of a flash crowd.

There have been similar works of cache proxy
layer solutions against flash crowds. BackSlash [5]
is a web mirroring system built on a distributed
hash table overlay. It uses this overlay to cache
hot objects as FCAN does. However, the mirror
servers have to be invested and well-organized in
advance which incurs the operation complexity and
low extensibility of the system. The solution using
multi-level caching [6] argues that with proper re-
placement algorithms a caching infrastructure de-
signed to handle normal web loads can be enough
to handle flash crowds. However, it’s a pitty that
currently the system lacks adaptive algorithms to
handle flash crowd flexibly.

Other works related to adaptive network include:
Adaptive CDN [2], focusing on the CDN network,
and NEWS [12], imposing congestion control on ap-
plication level which scarifies some user requests
to achieve a high network performance. We bene-
fit from these researches and propose our own im-

proved design.

8. Conclusion
This paper introduces a design of an adaptive

network against flash crowds, which owns the ad-
vantages of simplicity, low-cost, efficiency, flexibil-
ity and transparency to the end user. It dynami-
cally constructs P2P overlay on cache proxy server
layer to alleviate the traffic load from web server
according to the network condition.

The next steps in this research involve closer
study of possible solution to non-cacheable ob-
jects, detailed component designs for wrappers,
better improvement of P2P search efficiency, and
simulation-based evaluations.

References
[1] Akamai, http://www.akamai.com

[2] J. Jung, B. Krishnamurthy, and M. Rabi-
novich. Flash crowds and denial of service at-
tacks: Characterization and implications for
CDNs and web sites. In Proceedings of the
11th International World Wide Web Confer-
ence, pp. 252–262. IEEE, May 2002.

[3] A. Stavrou, D. Rubenstein and S.Sahu. A
lightweight, robust P2P system to handle flash
crowds. IEEE Journal on Selected Areas in
Communications, Vol.22, No.1,January 2004.
http://www1.cs.columbia.edu/angel/research/
P2P Exper-camera.pdf

[4] V. N. Padmanabhan and K. Sripanidkulchai.
The case for cooperative networking. In Pro-
ceedings of the First International Workshop
on Peer-to-Peer Systems (IPTPS 2002), pp.
178–190, Cambridge, MA, USA, March 2002.

[5] T. Stading, P. Maniatis, and M. Baker.
Peer-to-peer caching schemes to address flash
crowds. In Proceedings of the First Inter-
national Workshop on Peer-to-Peer Systems
(IPTPS 2002), pp. 203–213, Cambridge,MA,
USA, March 2002.

[6] I. Ari, B. Hong, E. L.Miller, S.A.Brandt
and D.E.Long. Managing Flash Crowds
on the Internet. Proc. MASCOTS 2003.
http://www.cse.ucsc.edu/elm/Papers/mascots
03 flash.pdf



[7] S. lyer, A. Rowstron, and P. Dr-
uschel. Squirrel: A decentralized peer-
to-peer web cache. Proc. PODC2002.
http://research.microsoft.com/antr/PAST/squi-
rrel .pdf

[8] C. Pan, M. Atajanov, T. Shimokawa and N.
Yoshida. Design of Adaptive Network against
Flash Crowds. FIT2004. September 2004.

[9] D. Rubenstein and S.Sahu. An analy-
sis of a Simple P2P Protocol for Flash
Crowd Document Retrieval. Technical re-
port, Columbia University, November 2001.
http://citeseer.ist.psu.edu/rubenstein01analysis.
htm

[10] T. Shimokawa, N. Yoshida and K. Ushi-
jima. DNS-based Mechanism for Policy-added
Server Selection. in Proc. Int’l Conf. on Ad-
vances in Infrastructure for Electronic Busi-
ness, Science, and Education on the Internet,
6 pages, August 2000

[11] T. Shimokawa, Y. Koba, I. Nakagawa, B.
Yamamoto and N. Yoshida. Server Selection
Mechanism using DNS and Routing Infor-
mation in Widely Distributed Environment
(in Japanese).Trans. IEICE, Vol.J86-B, no.8,
pp.1454–1462 (2003)

[12] X. Chen and J. Heidemann. Flash crowd miti-
gation via an adaptive admission control based
on application-level measurement. Technical
Report ISI-TR-557, USC/ISI, May 2002.


