

A Time-To-Live Based Reservation Algorithm

on Fully Decentralized Resource Discovery in Grid Computing

Sanya Tangpongprasit, Takahiro Katagiri, Hiroki Honda, Toshitsugu Yuba
Graduate School of Information Systems

The University of Electro-Communications
jao@yuba.is.uec.ac.jp, {katagiri, honda, yuba}@is.uec.ac.jp

Abstract

We present an alternative algorithm of fully decentralized resource discovery in Grid
computing, which enables the sharing, selection, and aggregation of a wide variety of
geographically distributed computational resources. Our algorithm is based on a simply
unicast request transmission that can be easily implemented. The addition of a reservation
algorithm can find more available matching resources in resource discovery mechanism. The
deadline for resource discovery time is decided with time-to-live (TTL) value. With our
algorithm, the only one resource is automatically decided for any request if multiple
available resources are found on forward path of resource discovery, resulting in no need to
ask user to manually select the resource from a large list of available matching resources.

We evaluated the performance of our algorithms by comparing with first-found-first-
served (FFFS) algorithm. The experiment results show that we can select the algorithm
which improves the performance of resource utilization or turn-around time. The algorithm
that finds the available matching resource whose attributes are closest to the required
attribute can improve the resource utilization, whereas another one that finds the available
matching resource which has the highest performance can improve the turn-around time.

Keywords: Grid computing, fully decentralized, resource discovery, TTL, reservation

1. Introduction

Grid computing is a distributed computing model where
easy access to large geographical shared computing
resources provided to large virtual organization (group of
resources which are geographically apart while appearing
to others to be a single)[1]. These shared computing
resources include computers, storage space, sensors,
software application, and data. All are connected through
the Internet and a middleware software layer provides
basic services for security, monitoring, accessing
information about components, etc. The Grid computing
applications allow users to harness the idle remote
resources. The jobs are sent from users and executed on
those resources, then the result of the execution is
returned to the users, resulting in the high-performance
computing.

A basic service in Grid computing is resource
discovery: given a description of resources desired, a
resource discovery mechanism returns the information of
resources that match the description. Resource discovery
is made challenging by a potentially large number of

resources and users and considerable heterogeneity in
resource types and user requests. Resource discovery is
further complicated by the dynamic variation of the
number of shared resources in the system, shared
resource characteristics such as availability and CPU load
which vary with the time.

Today Grid environments rely mainly on centralized
architecture [2][3]. This method can do the resource
management easily. However, when the number of
resources extremely increases, the system will be
outgrown and cause a bottleneck problem. Moreover, it is
risky to encounter the single point failure problem at the
central database and server. Therefore, the centralized
resource discovery architecture is not suitable for large-
scale networks.

There are alternative resource discovery mechanisms
studied by many researchers. These works pay attention
to a decentralized architecture instead of a centralized one.
In such a network, the central database or server has been
removed and all nodes act together to perform the
resource management. It has scalability, and has none of
the prementioned problems. Since there is no central
server where the information of all available resources in

the system is located, resource management with a fully
decentralized resource discovery mechanism is more
challenging. These related works rely on both of flat [4]
and hierarchical [5] resource discovery services. A hierar-
chical architecture is quite complicated, whereas a flat
architecture is easier to implement, and there is no doubt
to its scalability. Hence, flat decentralized architecture
will be studied in this paper.

Until now, on this flat, fully decentralized architecture,
most resource discovery mechanisms still let users
manually select the resource from the large list of
matching resources. Then, users will prefer the available
resource with the highest performance as it could be.
From the system point of view, this disables other users
who should use the resource immediately from accessing
the resource. Hence, the mechanisms should not allow
users to select the resources manually. The only one
matching is performed automatically, then it is convenient
for network administrator to control system performance.

In this paper, we introduce and evaluate a new
resource discovery mechanism on a flat, decentralized
resource discovery architecture. The feature of this
algorithm is to find an appropriate matching resource
using time-to-live (TTL) value as the deadline of resource
discovery time.

In section 2 of the paper, we briefly review related
work, then in section 3 we describe decentralized
resource discovery mechanisms in detail. In section 4 we
present an emulated Grid used in this work, and
experiment results are shown in section 5. Finally, we
close the paper with our conclusion and future work.

2. Related Work

There have been relatively few papers published on the
problem of large scale resource discovery in Grid. To our
knowledge, work by Iamnichi and Foster on decentralized
resource discovery [4] comes closest to our research. In
their paper, they proposed a flat, decentralized, self-
configuring architecture, where resources are located on
network nodes. A user connects to a local node and it
either responds with the matching resource or forwards
the request to another node. The request is forwarded
until a resource is found or the initial time-to-live (TTL)
value in the request message is decreased to zero. A node
can forward a request using one of four request
forwarding algorithms which consist of “random”,
“experience-based + random”, “best-neighbor”, and
“experience-based + best-neighbor”. For the result,
“experience-based + random” algorithm gives the best
performance among four algorithms. All algorithms are
based on first-found-first-served (FFFS) algorithm. In
FFFS, the request is sent back immediately if it finds any
resource whose attributes match to the type described in
the request.

In the real world of Grid computing, requests are often
described as a set of desired attributes, not only the type
of required resource (e.g., “a Linux machine with speed
more than 500MHz and 128MB of available memory”)
[6]. We think that FFFS is insufficient for the resource
discovery mechanism.

In this paper, we present a new algorithm differing
from FFFS, which is based on “experience-based +
random”. With the addition of the reservation algorithm,
more available matching resources can be found by using
TTL value in the user’s request message. Our mechanism
automatically decides which matching resource should be
informed back to the user.

Our framework relies on unicast request transmission.
Although it is quite complicate to decide algorithm,
multicast request transmission from users can perform
resource discovery. The transmission of a unicast request,
however, can implement easily. Besides, it does not
spread out the packets of requests on the network like
multicast transmission which is often implemented in
small networks.

In the next section we show how this resource
discovery mechanism works with the reservation
algorithm.

3. Resource Discovery Algorithm

In Grid computing networks there are a great deal of
resources shared by all members in virtual organization.
Resource discovery service acts as an intermediary
between users and resource providers. Its function is to
look for the resources whose attributes match to the
required description in the user request in large
networked environments.

3.1 Model

We assume that all members in the virtual organization
have at least one server in order to store and provide
access to local resource information. We call these
servers “nodes”. Each node may provide information
about one or multiple resources. We also assume that all
resources are not able to execute more than one job
simultaneously.

There are many resource attributes in Grid computing,
e.g., OS, speed, memory size, local load, and etc.
“Matching resources” means the resources whose all
attributes are equal to or more than all required attributes
specified in the request message.

Our resource discovery algorithm is presented in the
following section.

 Figure 1. Flow chart of resource discovery algorithm

3.2 Framework

The framework is divided into two main paths: the
forward path and the backward path as shown in Figure 1.
In the forward path, when users need to use the
computing resource, they send their requests to their local
node. Then, the node checks whether there is any local
available matching resource whose attributes are better
than one reserved before which is recorded in the request.
If so, that resource is automatically reserved. In the
matching resource check and reservation process, if there
are more than one available matching resources in the
same node, the node decides to reserve only one.
After reserving, the information of the last reserved

resource is added in the request. Then, the node forwards
the request to one of its neighbors. The node decides
which node to forward the request to with the
“experienced-based + random” algorithm; i.e., nodes
learn from experience by recording answers by other
nodes. The record at any node has size (number of
neighbors)*(type of resource). Then, the request is
forwarded to the node that answered the same type of
request previously. If there is no any record for that type
of request, the request is forwarded to a randomly chosen
node. This process is continued until TTL decreases to
zero.

In the backward path, if the number of reserved
resource is more than one, these resources, except the
chosen one, have to be released from the reservation. The
user reply message is sent back from the destination node
along the forward path to release all unnecessary reserved
resources until it reaches the node that generated that
request. Then it will be sent to its local user. The node
records the experience by determining this reply message
on the path between target node, where the decided
available resource is located, and the node that generated
that request. After the resource discovery mechanism
finishes (the reply message reaches the node initiating the
request), the details of the job are sent directly from the
user to the target node. Then, the target resource starts the
job execution. The execution time of each job can be
approximately computed by the following equation.

)Hz ,speed(eperformanc sourceRe
)Clock CPU(izes Jobtime Execution =

We assume that when the resource is occupied by the
execution of any job, its status becomes unavailable. That
means it cannot be reserved or executed by another job
until the job execution finishes.

For the clearer view of this algorithm, now the case
that the user requires resource whose OS = Linux,
performance (speed) ≥ 1GHz, and memory size ≥ 256MB
is shown. (Assume that “closest attribute” consideration is
used). First, if at the first node, two matching resources
(resource A: Linux, 1.2GHz, 256MB and resource B:
Linux, 1.5GHz, 256MB), resource A is reserved since its
performance is closer to the required description than
resource B and the information of resource A is recorded
in request packet. The request is kept forwarding and
reserves more resource if it finds the idle resource C
whose OS = Linux, 1 GHz ≤ performance (speed) ≤ 1.2
GHz, and memory size ≥ 256MB. Now the information of
resource C is recorded in the request packet instead of
that of resource A. In the backward path, the reservation
at resource A is released. After the user receives the reply
packet back, the job is immediately sent to the node
where resource C is located.

To evaluate this algorithm, we also compared the
performance with the FFFS algorithm.

Yes

No

Yes

No

No

Yes

Yes

No

Local available
matching resource ?

Is it better ?

Reserve

TTL = TTL -1

TTL = 0？

Request
forwarding

User send request
to local node

Any reserved
resource for this

 Release Reservation

Forward path

Is it recorded
in the request ?

Yes

Backward path

No

Backward to
one node before

End

Reached request node ?

3.3 Resource Discovery Algorithms

Instead of letting users select the resource manually from
a large list of resources, we present four alternative
resource discovery algorithms which automatically try to
find only one resource for each user request.

ALG1. TTL + closest attribute: The request is
forwarded until TTL value decreases to zero. The
resource reservation algorithm is used to find the
resources whose attributes are closest to the description in
the request.

ALG2. TTL + highest performance: the same as
ALG1, but it looks for the resource which has the highest
performance.

ALG3. FFFS + closest attribute: The request is sent
backward immediately if it finds the first available
matching resource. In the case that there are multiple
available matching resources found in the same node, the
user is answered with the resource whose attribute is
closest to the description in the request.

ALG4. FFFS + highest performance: The same as
ALG3, but in the case that there are multiple available
matching resources found in the same node, the user is
answered with the resource which has the highest
performance.

The following section describes the simulated Grid
used to evaluate these algorithms.

4. A Simulated Grid for Resource Discovery

In order to study large scale network environments, we
decided to evaluate our resource discovery algorithms
with a simulation which can be designed as a fully
decentralized, flat large-scale architecture.

The information at each node contains information
about its local shared resources and information about
experience which it records about neighbor nodes. We
assume there is adequate memory at every node.

In real world environments, the user requests have
various patterns. Some require single resource, some
require multiple resource. In this work, we simplify and
assume that all users require only single resources, and
matching resources are the resources whose attributes are
equal or more than the required description in the request.

The following demonstrates more details in our
simulation model.

4.1 Network Topology

We generated the starting topology using Tiers network
generator [7]. We assume that all the nodes are the
members of virtual organization and connected through
time. In the topology generation process, we also pay

attention to the point that the network should be similar to
the real network, avoiding unrealistically configurations,
such as a star topology that is found only in small
networks. In this study, we do the experiments with an
assumption similar to Iamnichi and Foster’s with a 1000-
node network.

Links connected in the network are all duplex links
with queue and have no link failure. The transmission can
be done two ways simultaneously. If any packet tries to
transmit via the busy link, it is added in a link queue, and
initiates transmission as soon as the link becomes idle.

4.2 Resource Distribution

The resource distribution in our experiment is related to
real environments. The nodes that share a large number of
resources are fewer than the nodes that share only one or
two resources. Hence, the distribution of resources on
node is decided by geometric distribution, where the
average number of resources is the constant set to five.

In order to evaluate all algorithms, we neglect some
parameters. In our experiment, resource attributes consist
of only one type of resource (OS) and performance
(speed). We assume that each resource has adequate
memory for the required memory size described in every
request.

4.3 User Requests Generation

Every node generates its own request through simulation
time. The random time of request generation is the
Poisson process, the most common distribution of spike
generation. Information in the request consists of source
address, description of required resource, traveling path
of message, and description of the most appropriate
resource.

All of the distribution functions used in this work is
shown in Table 1.

Table 1. Distribution functions of all parameters
Parameter Distribution Function

Number of resources on node
Resource type (OS)
Resource performance (speed)

Geometric
Uniform
Poisson

Required resource type (OS)
Required performance (speed)
Job size
Request generated time

Uniform
Poisson
Negative exponential
Poisson process

5. Experiment Result

We studied the performance of all algorithms within three
parameters: the number of requests which found matching
resources, turn-around time, and resource utilization. The

number of requests which found matching resources is
considered by dividing by the number of total generated
requests. A turn-around time means the period counted
from when the user’s node initiates the request
transmission until the result of execution is sent back to
the user. Resource utilization is the percentage of time
that all resources are occupied by the job execution. The
value of all parameters used for the following results is
shown in Table 2.

Table 2. Average value of all parameters
Parameter Average value

Number of resources on node
Resource type (OS)
Resource performance (speed)
Required performance (speed)
Job size

5
10

10 (*108 Hz)
10 (*108 Hz)

10 (*1011 CPU Clock)

5.1 The relationship to average request genera-
tion time

In this section, we show the relationship between average
request generation time and the two parameters: number
of requests which found matching resources and resource
utilization which are shown in Figure 2 and 3,
respectively.

When the request generation rate decreases (average
request generation time increases), the number of requests
which found matching resources increases and the
resource utilization value decreases. This is because the
increment of request generation time leads to decrease a
number of requests traveling in the network. This means
less resource access competition. Hence, there is more
probability for each request to find available matching

0
10
20
30
40
50
60
70
80
90

0 5 10 15 20 25 30
Average request generation time (secs.)

N
um

be
r o

f r
eq

ue
sts

 w
hi

ch
 fo

un
d

m
at

ch
in

g
re

so
ur

ce
s (

%
)

ALG1
ALG2

Figure 2. Percentage of requests which found
 matching resources when TTL = 10

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30
Average request generation time (secs.)

Re
so

ur
ce

 u
til

iz
at

io
n

(%
)

ALG1
ALG2

Figure 3. Percentage of resource utilization when TTL = 10

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40
TTL

N
um

be
r o

f
re

qu
es

ts
w

hi
ch

 fo
un

d
m

at
ch

in
g

re
so

ur
ce

s (
%

)

ALG1, 15

ALG2, 15

ALG3, 15

ALG4, 15

ALG1, 5

ALG2, 5

ALG3, 5

ALG4, 5

Figure 4. Percentage of requests which found matching resources

 when average request generation time = 15 and 5 mins.

600

650

700

750

800

850

900

950

0 10 20 30 40

TTL

A
ve

ra
ge

 tu
rn

-a
ro

un
d

tim
e

(s
ec

s)

ALG1, 15

ALG2, 15

ALG3, 15

ALG4, 15

ALG1, 5

ALG2, 5

ALG3, 5

ALG4, 5

Figure 5. Average turn-around time when request generation rate = 15 and 5 mins.

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40

TTL

Re
so

ur
ce

 u
til

iz
at

io
n

(%
) ALG1, 15

ALG2, 15

ALG3, 15

ALG4, 15

ALG1, 5

ALG2, 5

ALG3, 5

ALG4, 5

Figure 6. Resource utilization when average request generation time = 15 and 5 mins.

resources. With few requests traveling in the network, the
occupied time of all resources becomes decreased and
results in less resource utilization. The change of these
two values is like the exponential curve. When the
average request generation time is large enough, the
resource utilization value gets close to zero, whereas the
number of requests that found matching resources
gets close to one value less than 100% because area
which requests can reach is limited by TTL value.

5.2 The performance of four algorithms

Figure 4, 5, and 6 show the performance of all four
algorithms when TTL value varies. We divided the results
into two parts: high request traffic condition and low

request traffic condition (the average request generation
times are, respectively, 5 and 15).

When TTL value is increased, the number of requests
that found matching resources of all the algorithms
increase but do not get close to 100% because of a
uniform request generation in all network areas, the
resources in the area far from the user node also occupied
by other users’ requests. In Figure 4, throughout TTL
value, ALG1, ALG3, and ALG4 have similar number of
requests that found matching resources in low request
traffic conditions (around 85%), whereas ALG3 seems to
have a best performance (67.5%) in high request traffic
condition, but it is not that different from ALG1 and
ALG4 (65.6 % for ALG1 and 66.4 % for ALG4). In high
request traffic conditions, the effect of reservation on the
forward path makes other requests not able to access that

resource, which results in lower number of requests that
finds matching resources in ALG1 than that in ALG3.
Not surprisingly, ALG4 gives the worst performance
value (77.4% and 57.8% at low and high request traffic
condition, respectively). To find the resource with the
highest performance, it makes whoever has more need
unable to use that resource, whereas ALG1 tried to keep
the high performance resource idle in order to support
other requests.

According to Figure 5, if comparing the same average
request generation time, ALG2 can finish resource
discovery and user’s job execution in the shortest time,
and the next is ALG4, ALG3, and ALG1 as can be
predicted from the function of each algorithm. ALG1
executes the user job at the resource whose attributes are
closest to the description in the request, resulting in the
longest execution time, whereas ALG2 has the shortest
execution time. When TTL increases, the turn-around
time of ALG1 tends to be longer, but that of ALG2 tends
to be shorter because it is possible to find the resource
with higher performance. The higher the chosen resource
performance, the shorter the turn-around time.

In both request traffic conditions, the turn-around
times of ALG1 are not so different because the attributes
of the chosen resource is limited by the required attributes
described in the request, whereas the resource chosen by
ALG2 is the highest performance resource that is found in
the forward path. As can be seen, the gap between the
longest and shortest execution time in high request traffic
conditions (109 secs., TTL = 40) is much smaller than
that in low request traffic conditions (230 secs., TTL =
40).

Considering resource utilization in the system in
Figure 6), the sequence of algorithms is the same as when
considering average turn-around time; that is ALG1,
ALG3, ALG4 and ALG2, respectively, where ALG1
results in the maximum resource utilization and ALG2
results in the minimum resource utilization. This
parameter has a direct relationship with average turn-
around time that includes resource discovery time, job
transmission and execution time. The resource discovery
time and job transmission time is very small compared
with the execution time in this study, so change in the
execution time has a direct effect on turn-around time.
Avoiding the use of high performance resources in ALG1
makes chosen resources occupied for a long job execution
time and causes the highest resource utilization. On the
other hand, ALG2 has the shortest execution time,
resulting in the smallest resource utilization. The other
algorithms, ALG3 and ALG4, have resource utilization
performance between that of ALG1 and ALG2, where
ALG3 has slightly higher resource utilization than ALG4.

It can be obvious from Figure 4, 5, and 6 that
increasing of TTL value that is more than 10 can improve
the performances of all algorithms only a little.

Considering at TTL = 10 and average request generation
time = 15, the number of requests that found matching
resources of all algorithms are not different, but the turn-
around time and the resource utilization differs in each
algorithm. ALG2 has the shortest execution time (875,
700, 796, and 789 secs. in ALG1, 2, 3, and 4,
respectively), but ALG1 has the best performance on
resource utilization (34.9%, 29.3%, 33.6%, and 32.2% in
ALG1, 2, 3, and 4, respectively).

5.3 The performance to support the special

requests

The previous results show the common characteristics of
four algorithms when the requests are generated
uniformly throughout the network. In this part, we study
one more case when generating the special requests on 20
random nodes in the high request traffic condition and
TTL = 10. The value of parameters used in the part and
the result are respectively shown in Table 3 and Table 4.

Table 3. The parameters of common and special request

 Average Required
performance

(speed)

Average Genera-
tion time

Common request 10 (*108 Hz) 5 mins.
Special request 15 (*108 Hz) 60 mins.

Table 4. Number of special requests which found
 matching resource when average common

 request regeneration time = 5 mins.

Algorithm
Number of special requests

which found matching
resource (%)

ALG1 29.0

ALG2 21.5

ALG3 24.7

ALG4 22.2

From Table 3, the special requests require the

resources with higher performance than the common
request, but the number of special requests is lower.
According to Table 4, it is obvious that ALG1 has the
best performance on the number of special requests which
found matching resource (29.0%), where ALG2 has the
worst performance (21.5%). This is because ALG1 tries
to keep the high performance resource idle, thus the
special requests can make use of those resources more
than those of ALG2.

6. Conclusion and Future Work

In this paper we have introduced resource discovery
algorithms with TTL-based reservation and unicast
request forwarding algorithms on a flat, fully
decentralized architecture in Grid computing. In order to
evaluate our algorithms, we created a simple large-scale
network of Grid computing and decided all the necessary
parameters and their distribution patterns by considering
real environments. Our reservation algorithm is
implemented on the forward path of request to find more
available matching resources, then on the backward path
it releases all reserved resources except one that will be
used to execute the job specified by the user.

Our results show that the reservation algorithm
improves the performance of resource discovery from
first-found-first-served (FFFS) algorithm which is
implemented in Iamnichi and Forster’s work [6]. ALG1
attempts to make use of resources in the system as much
as possible and keep high performance resource idle and
result in higher resource utilization, whereas ALG2
attempts to find the resource with the highest performance
and can improve turn-around time.

However, there are tradeoffs between the number of
requests which can be supported and the turn-around time.
When we decide which algorithm to operate, it is
important to think whether we would like to support the
need of the network administrator – to maximize resource
utilization (ALG1) or the user’s – to minimize the turn-
around time (ALG2).

We can apply this algorithm to real Grid computing
by deciding the appropriate TTL value; i.e., not too small
and too large value. Too small TTL value results in bad
performance, but too large one can improve the
performance only a little, but takes much more resource
discovery time. The appropriate TTL value depends on all
the network environments; e.g., network size, number of

all resources, resource distribution, and etc. In this study,
the appropriate value is around TTL = 10.

We have done the simulation on a simple assumption
and with few conditions. In the future, we plan to extend
our Grid environments, implement in large network and
more complex condition, and design more efficient rules
in reservation algorithms.

References

[1] I. Foster, C. Desselman, and S. Teucke, “The Anatomy of
the Grid: Enabling acalable virtual organizations,” International
Journal of High Performance Computing Applications, pp. 200-
222, 2001
[2] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, “Grid
Information Services for Distributed Resource Sharing,” in
Proceeding of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), IEEE
Press, pp. 181-184, 2001
[3] M. Livny and R. Raman, “High-throughput resource
management,” In I. Foster and C. Kesselman, editors, The Grid :
Blueprint for a New Computing Infrastructure, chapter 13.
Morgan Kaufmann Publishers, Inc., 1998.
[4] A. Iamnitchi and I. Foster, “On Fully Decentralized
Resource Discovery in Grid Environments,” in International
Workshop on Grid Computing, Denver, Colorado, 2001
[5] Z. Juhasz, A. Andics, S. Pota, “Towards a Robust and Fault-
tolerant multicast discovery architecture for global computing
grids,” 4th Austrian-Hungarian Workshop on Distributed and
Parallel Systems (DAPSYS 2002), Linz, Austria, pp. 74-81,
2002
[6] R. Raman, M. Livny, and M. Solomon, “Matchmaking: An
extensible framework for distributed resource management,”
Cluster Computing: The Journal of Networks, Software Tools
and Applications, 2: pp.129-138, 1999.
[7] M. Doar, “A Better Model for Generating Test Networks,”
IEEE Global Telecommunications Conference/ GLOBECOM'96,
London, UK, pp. 83-96, 1996

