Web Application Framework for Toolkit-based GUI Programming

Masanobu Umeda Osamu Takata [sao Nagasawa

Department of Creation Informatics

Graduate School of Computer Science and Systems Engineering
Kyushu Institute of Technology

This paper proposes a new framework for building interactive applications using the
WWW. This framework introduces the Web Application Shell (WASH) and the GUI
library for web applications. The WASH is a web application container which, instead
of UIMS, provides several basic services to web applications. The GUI library plays the
same role as that in stand-alone applications, and enables toolkit-based GUI program-
ming of web applications on the server side. The WASH and the GUI library encapsulate
complex page descriptions in HTML and scripting languages, the representation of a
client state using cookies and the URL, and the management of state integrity between
a client and a server. Unlike other approaches such as JSP and WebMacro, application
programmers need not know how and what page descriptions are generated, and how
session and client state are managed. This framework makes it possible to use abstrac-
tion and modularization techniques in the GUI programming of web applications in the
same way as that of traditional stand-alone applications. This paper also describes the
design and implementation of the WASH servlet and Servlet Window Toolkit (SWT) in
Java. SWT is practically compatible with Abstract Window Toolkit (AWT) and Swing.
Through their use, Java applications using AWT and Swing can be easily transformed
into web applications with little modification.

1 Introduction

Applications based on World Wide Web (WWW)
technology have the advantage of centralizing busi-
ness resources such as hardware and software. How-
ever, such web applications, unlike traditional stand-
alone applications, involve serious difficulty in their
development and maintenance.

The HyperText Markup Language (HTML) [1],
which is used for describing presentation data in the
WWW., is capable of describing static web pages, but
is not capable of describing pages which are dynami-
cally changed according to the context of their inter-
action with a user. Therefore, page descriptions are
usually generated dynamically on the server side us-
ing ordinary programming languages, such as Perl,
PHP, and Java. Such a server-side program, how-
ever, often becomes complicated, and will often be-
come problematic in its development and mainte-
nance. This is because (1) a server-side program is
often cluttered up with descriptions in HTML and
some client-side scripting languages, (2) HTML de-
scriptions embedded in a program lack the supports
of authoring tools, such as a syntax checker, and (3)
it is the responsibility of a server-side program to
manage the identity and state of clients using cook-
ies or URL [2] rewriting due to the stateless feature
of the Hyper Text Transfer Protocol (HTTP) [3].

JavaServer Pages (JSP) [4] and Active Server
Pages (ASP) define a simple rule set in order to
describe both programs in Java or VisualBasic and
HTML descriptions in a single source file. These ap-
proaches can improve the descriptiveness of one con-
tent independent from an other, but are not effective
for mixed contents. Tag libraries and macro lan-
guage approaches, such as JSTL [5] and WebMacro
[6], have also been proposed. However, they are not
essential solutions for resolving the mixture of lan-
guages having different syntax and semantics. Sup-
ports of the identity management and state manage-
ment of web clients are beyond their scope.

This paper proposes a new framework for build-
ing interactive applications using the WWW. This
framework introduces the Web Application Shell
(WASH) and the GUI library for web applications.
The WASH is a web application container which
provides several basic services to web applications
in place of the user interface management system
(UIMS). The GUI library plays the same role as
it does in traditional stand-alone applications, and
enables the toolkit-based GUI programming of web
applications. This framework makes it possible to
use abstraction and modularization techniques in the
GUI programming of web applications in the same
way as that of traditional stand-alone applications.

This paper also describes the design and imple-



mentation of the WASH servlet and Servlet Window
Toolkit (SWT) in Java. SWT is practically com-
patible with Abstract Window Toolkit (AWT) and
Swing. By using them, Java applications using AWT
and Swing can be easily transformed into web appli-
cations with little modification in terms of GUIL.

In the following sections, a new model of web appli-
cations and the details of the WASH are described.
In section 4, the design and implementation of the
WASH servlet and SWT are described. In section
5, experiments regarding practical web application
programming are described. Related works are dis-
cussed in section 6.

2 A New Model of Web Appli-
cations

Based on the multitier model [7], Figure 1 illustrates
the proposed architecture of web applications. The
WASH, WASH proxy, and GUI library, which are
hatched in the figure, are newly introduced elements
in this framework.

The Web Application Shell (WASH) is located be-
tween an application gateway, such as CGI and Java
Servlet, and a web application. The WASH plays a
central role in this framework, that is, the life cy-
cle management of an application, event manage-
ment, and the state management of a web client.
The WASH proxy performs some parts of the state
management and event management in a web client
on behalf of the WASH. These are functionally the
same as fundamental services provided to a stand-
alone GUI application by UIMS. These functions
are implemented mainly as a part of an individual
web application in a traditional multitier model, and
are not well distinguished from application-specific
ones. The proposed framework clearly distinguishes
the functions related to UIMS from others, and in
contrast defines them as functions which should be
provided by a container of a web application. This
functional separation advances the abstraction of the
execution environment of a web application in a way
different from Java Servlet, JSP, and ASP.

On the other hand, the GUI library provides pre-
sentation and operation using GUI and application
programming interface to a web application through
abstract GUI components. The GUI library encapsu-
lates HTML descriptions of GUI, which are scattered
in an application program, into GUI components.
This encapsulation separates GUI descriptions and
business logic in an application program, and GUI
programming based on more abstract concepts be-
comes available.

3 The Web Application Shell

3.1 An Overview of the Web Applica-
tion Shell

Figure 2 illustrates an overview of the WASH and
its relationship to the WASH proxy and the GUI li-
brary. The WASH is composed of four subsystems: a
system controller, application manager, event man-
ager, and display manager. Communication between
a user and a web application starts from an invoca-
tion event which is sent as a HTTP request from a
web client to the system controller. If the system con-
troller receives an invocation event, it requests the
application manager to load and invoke an appropri-
ate application. An application, which is invoked by
the application manager, instantiates the GUI com-
ponents of the GUI library for the interaction with
a user in the same way as does traditional stand-
alone applications. The system controller then re-
quests presentation data regarding GUI components
through the display manager, and returns the result
to a web client. The returned result includes the
definition of the WASH proxy written in JavaScript.
Subsequent communication between a web client and
the system controller is performed via the WASH

Proxy.

A user action on a web client, such as a button click
by a mouse, is initially intercepted by the WASH
proxy, and is then re-composed as a new URL rep-
resenting an action event. The WASH proxy then
sends it as a HTTP request to the system controller
via a HTTP server. An action event is sent to the
event manager via the system controller, and is dis-
patched to an appropriate GUI component as a GUI
event. A GUI component, which receives a GUI
event, may change its internal state, and if neces-
sary notify an application of the event’s reception.
The display manager requests new presentation data
regarding GUI components, and returns the data to
a web client.

Web Application Shell

Web Client (WASH)

Web Appiication

nvoke nvoke | Applcation
application terminate Bosiness
———ao Appication applicaton, |
P a— e . == oo LogiPat
Send
o o 5 & ey
ad [l L1 —— [l syt vent o
Rendering [ - S Controler [ Manager [
Engine WASH
]
Proxy Request o 4]
presentation
Display |1 data
== —
i Manager [

Figure 2: Overview of the WASH



Invoke /
(\:’:{Eb -1 terminate Web
fent application Application
WASH
Proxy
Yieb Dispatch Enterprise
Web . HTTP | Application - plication events‘ P . .
Clent| |[«€T1—] Sever [~ Gateway [®@--1 Shel > ™ I”Sf°rsrt”;2‘s’”
L] ASH ¥
tel »
Request ibrary [
presentation
data o
-t
Web
Client| |1
\\ Client Tier \\ Middle Tier / BackendTier/

Control flow  Data flow

WASH
extension

Figure 1: Architecture of web applications using the WASH

3.2 Events Handling

3.2.1 Representations of Events

A link represented by an anchor tag in a HTML de-
scription is a connection from one web resource to an-
other. If a mouse or keyboard action activates a link,
an associated resource is retrieved based on a proto-
col and a location specified by a URL. The WASH
uses this simple communication mechanism as the
basis for notification of GUI events from a web client
to the WASH. Consequently, interactions that re-
quire quick feedback, such as drawing a rubber band,
cannot be supported directly since the HTTP is in-
efficient for such purposes. This constraint over the
protocol does not, however, deny interactive func-
tions, such as a tool tip or a balloon help, using Dy-
namic HTML (DHTML) [8].

The WASH represents a GUI event raised on a web
client by a URL which takes the following form:

http://hostname/ pathname/wash?parameters

wash is the name of a WASH implementation. In the
case of Java Servlet implementation, it is the name of
a Java class. Therefore, the parameters part specifies
all meanings of an event. WASH events are classified
into three types: invocation event, action event, and
pseudo event.

3.2.2 The Invocation Event

The invocation event invokes a web application on
the server side. It is directly raised by a link activa-
tion on a web client. The parameters of the invoca-
tion event take the following form:

application = ApplicationName
ApplicationName specifies the name of an application
to be invoked.

The reception of an invocation event by the sys-
tem controller starts a new session, and prompts the
controller to ask the application manager to invoke
a named application. An invoked application is as-
signed an identifier, ApplicationlID, to distinguish it
from other applications running for the same web
client at the same time.

3.2.3 The Action Event

The action event notifies a server-side application of
a user action taken on a web client. It is directly
raised by a link activation on a web client. Parame-
ters of the action event take the following form:

appID = ApplicationlD &
targetID = ComponentID &

eventName = FventName &
eventData = FventData &
State Values

ApplicationID is an assigned identifier of an appli-
cation. ComponentID specifies a GUI component
to which an event is sent. EwventName specifies the
name of an event, and FventData is a parameter spe-
cific to an event. StateValues is described in section
3.4.

When the system controller receives an action
event, it initially processes StateValues, and then
sends the event to the event manager. The event
manager dispatches a received event to a correspond-
ing GUI component in an implementation-specific
form.

3.2.4 The Pseudo Event

The pseudo event is indirectly raised by a response
to an action event unlike other types of events. Pa-
rameters of the pseudo event take the following form:



appID = ApplicationID &
targetID = ComponentlD &
eventName = FEventName

The redraw event, which forces the display update
of a web client, is defined as a pseudo event. Its
details are described in the following section 3.3.

3.3 Display Update Management

A web page can be divided recursively into several
panes called frames using FRAMESET and FRAME tags
as shown in Figure 3. When a link in a frame is
activated, either its own frame, its parent frame, or a
whole page containing it can be updated. Generally,
an action event raised in one frame may affect the
presentation of other frames as well as this frame. In
such a case, a whole page may have to be updated
to reflect all changes. Updating a whole page may,
however, cause unnecessary window flushing and lose
the positions of frame separators. Therefore, it is
important to minimize display update by updating
frames selectively.

The redraw event, a kind of pseudo event, is de-
fined in order to update a specific frame without up-
dating a whole page. Redraw events are raised as
soon as a HTML description of a frame, in which a
link was activated, is loaded into a web client. Gen-
eration of this pseudo event is realized by the WASH
proxy which is activated by a JavaScript program
embedded in a HTML description. Figure 4 shows
an example of a HTML description which raises a
redraw event when the description is loaded, where
UpdateWindow (WIN, URL) is a WASH proxy func-
tion to replace the contents of a window or a frame
named WIN with a given URL. This HTML descrip-
tion is loaded when a radio button is clicked in the
right-hand side of Figure 3. The button click causes
resource changes in a component on the left-hand
side. These changes are reflected to a web client by
a redraw event for a frame on the left-hand side.

Unlike action events, redraw events are sent only
to the display manager in order to request new pre-
sentation data regarding GUI components.

SET and FRAME ] . [ 5]
T rME REE ETY) BEG InIQ JH3-hE A0
e
MName Sex @ Male © Female
Ags | [onknown
Venus
Sex Male i
Address | [Mercury e
Saun =
=
GClick Here To Accept =
=]
A 2 @ |FuvhETas | gt

Figure 3: A web page split into panes using frames

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 ...">
<html>
<head>
<script language="JavaScript" src="/wash.js"></script>
<script language="JavaScript">
function Initialize(){
UpdateWindow(’box1’, ’/servlet/Wash?appID=testl&
targetID=boxl&eventName=redraw’) ;
}
function Uninitialize(){}
</script>
</head>
<body onload="Initialize();" onunload="Unini...>
<form>
<table border="0" cellpadding="10" ...>

</table>
</form>

</body>
</html>

Figure 4: A HTML description raising a redraw event
when loaded

3.4 Window States Management

A page description can have special elements called
controls, such as the TEXTAREA element and the
INPUT element, in a HTML form. Each control has
a value that can be modified by a user action. When
a form containing controls is submitted to a HTTP
server, current values of the controls are sent together
with a URL of the form. Therefore, even if values
of multiple controls in one form are locally changed
before submission, a HTTP server can notice all of
their changes. If controls are distributed in different
frames of a web page such as that shown in Figure 3,
this form behavior, however, does not work since a
form is not allowed to contain frames. When a link is
activated in one frame, a HTTP server is never noti-
fied of value changes of the controls in other frames.
In addition, it is generally not a simple task to keep
track of control values before and after a submission
[4].

The WASH proxy maintains the control values in
a page by collecting all values and sending them to a
HTTP server together with an activated URL. Stat-
eValues in section 3.2 represents the current values
of all controls in a web page. StateValues takes the
following form:

ComponentID1 = Valuel &
ComponentID2 = Value2 &

ComponentIDN = ValueN

State Values in a URL is extracted by the system con-
troller, and it is transformed into events for reflec-
tion. The events are then sent to the event manager
to dispatch them to corresponding GUI components.



3.5 Communication Optimization

All action events do not always imply an update of
GUI presentation of a web application. If an action
event affects only the internal states of some GUI
components but not their presentations, there is no
need to transmit the presentation data of GUI com-
ponents to a web client and redraw a client screen.
However, if no presentation data is sent back to a
web client due to a lack of presentation changes,
it is impossible for a web client to construct the
appropriate presentation. This is because available
JavaScript implementations do not allow conditional
update of a web page when a HTTP request is gen-
erated by substituting a value of the href property
of the location object as follows:

window.location.href = NewURL

The WASH optimizes communication between a
web client and the server by using a small Java ap-
plet class named Connector, shown in Figure 5. The
Connector applet retrieves a content for a given URL
by communicating with a HTTP server directly. The
SendEvent function of the WASH proxy accesses
an instance of the Connector class embedded in a
web page [9] in order to obtain presentation data
for a given URL instead of operating a location
object. The display manager on the server side re-
turns empty data if and only if there is no change in
the presentation data of all GUI components. The
WASH proxy updates a web page by operating a
document object only when the returned data is not
empty. Figure 6 shows a simple implementation of
the SendEvent function of the WASH proxy.

public class Connector extends Applet {
public String getContent(String event)
{
URL url = new URL(event);
InputStream is = url.openStream();
BufferedReader reader =
new BufferedReader(new InputStreamReader(is));
try {
StringBuffer s = new StringBuffer();
String 1 = reader.readLine();
while(1l !'= null){
s.append (1) .append("\n");
1 = reader.readLine();
3
return s.toString();
} finally {
reader.close();

Figure 5: Connector applet

function SendEvent (url){
// Collect state values of controls.
var states = CollectStates(window.top);
// Build a complete URL for Connector.
url = window.location.protocol +
"//" + window.location.hostname +
((window.location.port == "")?"":
(":" + window.location.port)) +
url + (states==""?7"":"g"+states);
// Retrieve contents of URL using Connector.
var newtext =
window.document.connector.getContent (url);
// Update a document if non-empty.
if (newtext != null && newtext != ""){
document . open ("TEXT/HTML") ;
document .write(newtext);
document.close();
};
¥

Figure 6: SendEvent function of the WASH proxy

4 Java Implementation of the
WASH

The WASH has two implementations. One is an
implementation in a multi-threaded Prolog environ-
ment [10], and the other is that in Java Servlet. This
section describes the design and implementation of
the WASH servlet and the GUI library in Java.

4.1 WASH servlet

The WASH servlet is an implementation of the
WASH in Java Servlet. Figure 7 illustrates a system
configuration of a web application using the WASH
servlet. The application library stores classes of web
applications, and the GUI library stores classes of
GUI components for web applications.

The Wash class is an implementation of the system
controller, that extends the HttpServlet class and
implements the SingleThreadModel interface. The
doGet method of this class is a main function for pro-
cessing HTTP requests. The doGet method analyzes
a HTTP request, and calls for the appropriate meth-
ods of the ApplicationManager, EventManager, and
DisplayManager classes as described in section 3.
For example, an ApplicationManager loads a re-
quested application class from the application li-
brary, and invokes it by calling the public static
void main(String[]) method of the application. A
stand-alone application of Java is invoked in the same
way.

4.2 Servlet Window Toolkit

The design and implementation of the WASH servlet
are straightforward, but those of the GUI library are
not. Java has Abstract Window Toolkit (AWT) and
Swing [11] as the standard GUI programming library
for applets and stand-alone applications. Many de-
velopment tools are also based on these libraries. If



Web Invoke / Server-side
Clem| ™ terminate Appiicaion
applicatio
m Dispatch
Web| (|l HITP |l Seviet [ ol WASH ev::ts |E;“,m'(‘-se
Client| | (- Server -] Engine [ Senvlet > [ ”Sy::‘:mlzﬂ
— GUI
Request | Camponens
presentation
= data_,|
Web
clent| |[™

A

Java Application swr
Applet Lbrary GUI
Lbrary Library

Figure 7: System configuration of a web application
using the WASH servlet

the libraries and tools can be used for the develop-
ment of web applications, their programming and
debugging become much easier than those of tradi-
tional servlet applications. Consequently, AWT and
Swing are chosen as a model of the GUI library in-
stead of a newly designed one, and the application
programming interface is carefully designed so that
stand-alone applications are easily transformed into
web applications.

A GUI library for the WASH servlet is named
Servlet Window Toolkit (SWT) and placed under
the package swt. The structure of SWT is almost
the same as that of AWT and Swing so that stand-
alone applications are transformed into web applica-
tions by renaming imported packages, java.awt and
javax.swing, at minimum. The design policy of the
class structure of SWT can be summarized as follows:

1. Component classes of AWT and Swing are re-
defined using the same structure in the package
swt.

2. If possible, non-component classes of AWT and
Swing, such as the AWTEvent class, are extended
using the same name in the package swt. Other-
wise, they are redefined using the same structure
in the package swt.

3. If possible, interfaces of AWT and Swing are
used as is. Otherwise, they are redefined using
the same structure in the package swt.

The LayoutManager interface is an example of the re-
defined interface. This is because its methods take an
instance of the Component and the Container classes
of AWT. These methods have to be rewritten so as
to take an instance of the corresponding classes of
SWT.

Needless to say, it is difficult to imitate all parts of
AWT and Swing using HTML and the HTTP. The
following sections describe events handling, presen-
tation and layout, and rendering operations in SWT.

4.3 Events Handling in SWT

Events handled in the WASH are limited to a mouse
or keyboard action which activates a link. There-
fore, an action event of the WASH can be mapped
naturally into semantic events which indicate that
a component-defined action has occurred. The
ActionEvent, ItemEvent, and TextEvent classes are
such examples. However, low-level events defined as
subclasses of the ComponentEvent class are difficult
to map completely. For example, it is difficult to
generate symmetrically the FocusEvent which indi-
cates that a component has gained or lost a keyboard
focus. In this implementation, the semantic events
of AWT and Swing are only realized. This restric-
tion on event handling in SWT means that a stand-
alone application, which uses low-level event classes,
does not work without many changes. However, most
stand-alone applications, which use only semantic
event classes, work without any changes in regard
to event handling. Figure 8 shows methods of the
Button class of SWT for handling an ActionEvent.
These are the same as those of AWT.

protected void processEvent (AWTEvent e){
if (e instanceof ActionEvent){
processActionEvent ((ActionEvent)e);
return;
}
super.processEvent (e) ;

}

protected void processActionEvent(ActionEvent e){
if (actionListener !'= null){
actionListener.actionPerformed(e);

}
}

Figure 8: Event handling methods of SWT Button
class

Figure 9 shows how the ActionEvent class of
SWT is used in a Java program. When a Button
is clicked, an actionPerformed method of the
ActionListener interface is called for with an in-
stance of the ActionEvent class as described in Fig-
ure 8. This fragment of a Java program works for
both SWT and AWT without any changes, even
though their look and feel are different.

Button myButton = new Button("Click me once");
myButton.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e)q
(Button) (e.getSource()) .setLabel("Thanks!");
}
}
)5

Figure 9: An example of Java program handling a
semantic event



4.4 Presentation and Layout of Com-
ponents

HTML is capable of representing rich graphical con-
tents using tags and style sheets. Presentation data
of SWT classes have to be represented by these tags
and style sheets.

Most component classes can be represented by us-
ing one or more tags and optional style sheets. For
example, an instance of the Button class can be rep-
resented as follows:

<INPUT TYPE="button"
NAME="buttonl" VALUE="A label"
ONCLICK="SendEvent (’/servlet/Wash?...>

On the other hand, layout managers which imple-
ment the LayoutManager interface have some diffi-
culty in reproducing a look and feel similar to that
when using HTML. This is because directives regard-
ing layout constraints are limited in HTML. In this
implementation, the FlowLayout, BorderLayout,
and GridLayout classes are realized using the TABLE
tag, even though its look and feel is slightly differ-
ent. This may produce strange results when auto-
matic positioning by layout managers is combined
with absolute positioning.

4.5 Graphics Context and Rendering
Operation

The Graphics class of AWT represents a graph-
ics context which encapsulates the state information
needed for rendering image data to various devices
and off-screen images. The paint method of a com-
ponent paints an image of the component using a
Graphics object. On the other hand, components of
SWT are never rendered to display devices directly
since a web client renders to these devices instead.
The original use of the Graphics class is meaning-
less in SWT. Therefore, a Graphics object is instead
associated with a network stream bound for a HTTP
request so that the same programming style can be
realized in SWT. Figure 10 shows the paint method
of the Button class of SWT. A Button renders its im-
age by printing a HTML description to an associated
stream.

public void paint(Graphics g){
g.println("<INPUT TYPE=\"button\" " +

"NAME=\"" + getComponentID() + "\" " +
llvALUE:\llll + getLabel() + ll\ll "4
"ONCLICK=\"SendEvent (*" +
g.getBaseURL() + // http://xxx/wash?...
"gtargetID=" + getComponentID() +
"&eventName=ActionEvent" +
"geventData=" + // No event data
ll));\||>ll );

}

Figure 10: The paint method of SWT Button class

5 Application Examples

In this section, experiments regarding practical web
application programming using the WASH servlet
and SWT are described. Two types of applica-
tions are used in the experiments; a simple calculator
which is developed only for the experiments and an
accounting application which was developed in an in-
dependent research project.

The calculator is initially created as a stand-alone
application using AWT and Swing. This program
consists of approximately 100 lines and uses the
JButton class for representing the number and op-
erator keys, the TextField class for representing
the display, the JPanel and JFrame classes as their
containers, and the BorderLayout and GridLayout
classes for layout. Figure 11 is a snapshot of the
stand-alone calculator application. This calculator
application is then transformed into a web appli-
cation by substituting only the packages java.awt,
java.awt.event, and javax.swing for the package
swt. Figure 12 is a snapshot of the calculator using
the WASH and SWT. It functions in the same man-
ner as the stand-alone calculator application, even
though their appearances are slightly different.

The accounting application is designed to edit
vouchers of payment and sales using GUI, and to
store them in an accounting database constructed
using a commercial database software. It consists
of three functional modules: those for GUI, vouch-
ers management, and data management. It is origi-
nally designed for the use of a single user, and mul-
tiple access is out of consideration. Therefore, the
vouchers management and data management mod-
ules may have to be redesigned for practical use over
the WWW, but this problem is beyond the scope of
this paper. In this experiment, the GUI module is
only adapted to the WWW using SWT. Figure 13
is a snapshot of the stand-alone accounting applica-
tion. This accounting application is transformed sim-
ilarly into a web application. Figure 14 is a snapshot
of the accounting application using the WASH and
SWT. It also works functionally in the same man-
ner as the stand-alone accounting application, even
though their appearances are considerably different.
The reason why their appearances are different is
that the use of absolute positioning is combined with
the use of layout manager classes.

The results of these experiments show that (1) the
transformation of programs using AWT and Swing
into programs using SWT can be achieved by only
substituting a small number of lines regarding im-
ported packages, (2) the transformed programs work
functionally in the same manner as the original pro-
grams, and (3) the appearances of the transformed
programs are almost similar if layout manager classes
are only used instead of absolute positioning.



A Simple Galeulater — Micke =10l
= ] FIME REE FTW 17
| CEs -2 - @ [ 4| Qes 7
FELAD) [ iz @tsen |10 >
7 8 9 i =
—
SERER R 2lgl 517
. 5 s N sl elz
Azl zlE
o | ¢ | - PR o
& [ BEAvEaeh 4
Figure 11: Stand-alone

Figure 12: Calculator us-

lculator applicati
CATCUIAROT ADPHCALOL 4 o the WASH and SWT

=lc
- BRW WRQ Y@ JR-DE D AIE
R N N oy -
i 27w BB eereed] 28| 3
, ~=lolx] TN QR @ sroserdL | b TR
ey ann
B [ Ja n [ refE P
CArCa MR\
] aee[ el et wa [ aax wE Higist
) P RE[eW [ mE[ 2® [

w | e w | we

A [ & W8 | ek | #ex |

: i =t e o
5N e
s W

= ]

x -

T i
13 ihi

53
54 EE EEEE
55 b LTS
L}

B @ A 2 @ [IasvhRT 0 B) &l

Figure 13: Stand-alone

. o Figure 14: Accounting ap-
accounting application

plication using the WASH
and SWT

6 Discussion

Java applets and .NET applications using C# can
provide full-featured GUI functions over the WWW
using traditional GUI programming style and a sin-
gle programming language. However, they still do
not become major. This is because applet involves an
overhead cost which cannot be disregarded at a pro-
gram loading time, and full-featured GUI functions
are rarely needed in practical web applications. Con-
sequently, the importance of both HTML-based web
applications and a framework for supporting their
development does not change.

JSP and ASP are techniques to separate a server-
side program from HTML descriptions. For example,
the JSP container generates a Java Servlet program
automatically from a JSP description. This approach
reduces a mixture of different languages, but a JSP
description still contains fragments of a Java pro-
gram. JSTL and WebMacro are intended to reduce
a mixture of HTML and Java further by encapsulat-
ing either of them. These approaches have much ef-
fect on further reduction, but instead a new ad-hock
macro language has to be introduced. JavaServer
Faces [12] well separates descriptions in HTML and
Java; however, both descriptions are tightly coupled
with each other and they need to be developed in
tandem. In either case, the identity management
and state management of web clients are beyond
their scope. In contrast to these approaches, the

WASH and the GUI library encapsulate HTML de-
scriptions and the identity and state management
completely from application programmers, and en-
able web application development using traditional
GUI programming style and a single language.

HTML has the capability of describing web pages,
but descriptions of other GUI entities, such as menus
and tool bars, are beyond its scope. It is impossible
for a web application to have its own menus and tool
bars as does a stand-alone application. XMIL-based
User Interface Language (XUL) [13] is a language for
describing a user interface without being hardwired
into an application. XUL allows the development of
a web application which looks like a stand-alone ap-
plication in terms of GUI’s use of a web client. The
native use of XUL is, however, as difficult as that of
DHTML. The WASH and the GUI library can en-
capsulate the complexity of XUL, and enable appli-
cation programmers to utilize the distinctive features
of XUL and DHTML without knowing any of their
details. As a result, an interactive web application
which looks and acts like a usual stand-alone appli-
cation can be developed more easily and efficiently
than ever.

This paper describes an implementation in Java.
The proposed framework can be applied to other
programming languages and GUI libraries. In fact,
we have implemented similar functions in a multi-
threaded Prolog environment [10].

7 Conclusion

This paper proposes a new framework for building in-
teractive applications using the WWW. This frame-
work introduces the Web Application Shell (WASH)
and the GUI library for web applications. The
WASH is a web application container which, instead
of UIMS, provides several basic services to web ap-
plications. The GUI library enables toolkit-based
GUI programming of web applications in the manner
of traditional stand-alone applications. The WASH
and the GUI library encapsulate page descriptions in
HTML and scripting languages, the representation
of a client state using cookies and the URL, and the
management of state integrity between a client and a
server. Unlike other approaches such as JSP, JSTL,
and WebMacro, application programmers need not
know how and what page descriptions are generated,
and how session and client state are managed. In
this manner, abstraction and modularization can be
achieved in the GUI programming of web applica-
tions in the same way as that of traditional stand-
alone applications.

This paper also describes the design and imple-
mentation of the WASH servlet and Servlet Window
Toolkit (SWT) in Java. SWT is designed so that it
is practically compatible with AWT and Swing. In
many cases, Java applications using AWT and Swing
can be easily transformed into web applications by



renaming only imported packages in terms of GUI.

This framework will improve the productivity of
web application development, and also the quality
and maintainability of web applications. It is es-
pecially significant in that the same programming
model of the GUI and development tools as those for
traditional stand-alone applications can be applied
to web application development.

The current implementation of SWT does not sup-
port menus and tool bars. As XUL is capable of
defining these components, it is valuable to incorpo-
rate it into the library. Limitations of GUI events
and layout management are subjects of future re-
search.

References

[1] Dave Raggett, Arnaud Le Hors, and Ian Jacobs,
“HTML 4.01 specification,” W3C Recommenda-
tion, December 1999.

[2] T. Berners-Lee, R. Fielding, and L. Masinter,
“Uniform Resource Identifiers (URI): Generic
Syntax,” RFC2396, August 1998.

[3] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, L. Masinter, and T. Berners-Lee,
“Hypertext Transfer Protocol — HTTP/1.1,”
RFC2616, June 1999.

[4] Ben Forta, Scott Stirling, Edwin Smith, Larry
Kim, Roger Kerr, David Aden, and Andre Lei,
Java Server Pages Application Development,
Sams Publishing, 2000.

[6] Sun Microsystems Inc., “JavaServer Pages Stan-
dard Tag Library,” http://java.sun.com/ prod-
ucts/jsp/jstl/index.html, 2002.

[6] Semiotek Inc., “WebMacro: Web Macro,”
http://www.webmacro.org, 2002.

[7] Nicholas Kassem and Enterprise Team, De-
signing Enterprise Applications with the Java 2
Platform, Enterprise FEdition, Addison Wesley,
2000.

[8] Netscape Communications Corpora-
tion, “DevEdge Online - Dynamic HTML devel-
oper central,” http://developer.netscape.com/
tech/dynhtml/index.html, 1999.

[9] Marty Hall and Larry Brown, Core web pro-
grammang, Prentice Hall, second edition, 2001.

[10] Keiichi Katamine, Masanobu Umeda, Isao Na-
gasawa, and Masaaki Hashimoto, “Integrated
development environment for knowledge-based
systems and its applications,” in Proceedings
of the ACIS Second International Conference
on Software Engineering, Artificial Intelligence,
Networking € Parallel/Distributed Computing,
August 2001, pp. 739-745.

[11] Patrick Chan and Rosanna Lee, The Java Class
Libraries, vol. 2, Addison Wesley, second edi-
tion, 1997.

[12] Sun Microsystems Inc., “JavaServer Faces Tech-
nology,” http://java.sun.com/j2ee/ javaserver-
faces, 2002.

[13] XPToolkit Project, “XPToolkit:  Cross-
platform UI toolkit,” http://www.mozilla.org/
xpfe, 2002.



