
An Evaluation of Multi-path Transmission Control Protocol (M/TCP) with
Robust Acknowledgement Schemes

Kultida Rojviboonchai Hitoshi Aida
Aida Laboratory, Department of Frontier Informatics

Graduate School of Frontier Sciences, University of Tokyo
{kultida, aida}@sail.t.u-tokyo.ac.jp

Abstract

We present a new end-to-end transport protocol called Multi-
path Transmission Control Protocol (M/TCP) and its robust
acknowledgement (ACK) schemes. M/TCP is designed as an
alternative TCP option to improve reliability and
performance of today’s Internet. M/TCP allows a sender to
simultaneously transmit data via multiple controlled paths to
the same destination. The protocol requires no modification
in IP layer. In order to establish multiple paths, however, two
endpoints communicating through M/TCP need to be
subscribed to multiple ISPs1. Congestion control and error
recovery in M/TCP are developed based on those in TCP.
The ACK schemes introduced in this paper provide a
mechanism to improve M/TCP performance over Internets
with high packet-loss in an ACK channel. We compare
performance of M/TCP with TCP Reno implementation using
ns2 simulator. Simulation results show that M/TCP can
achieve significantly higher throughput than TCP Reno in the
presence of error model on forward and reverse paths.

1. Introduction

The explosive popularizations of personal computers and the
growth of World Wide Web (WWW) have increased the use
of the Internet beyond all expectations. Applications, which
require high reliability such as Electronic Commerce, have
come upon us. The networks used on the above-mentioned
business should provide high performance, high throughput
and high reliability. Meanwhile the Internet based on TCP/IP
is the best-effort type of service. The quality of the Internet is
not efficient enough to support such applications.

Since there is a large amount of TCP traffic: 85-95
percent of total packets are of the TCP type [1], TCP
congestion control is an important task for improving the
service provided to Internet users and the efficiency of
network resource utilization. Selective Acknowledgement
(SACK) [2] was reported as a TCP option. SACK option lets
the receiver inform the sender of data that has been received.
The sender can then retransmit only the missing data
segments. With the utilization of SACK option, reduced data
transfer rate leads to higher overall throughput. Explicit
Congestion Notification (ECN) [3] was suggested as an
effective method to drop packets. Experimental study in [4]
has shown the performance advantages of ECN for TCP short
transfers.

Nevertheless, the reliable service provided by TCP
is still lower compared with the public communication
network using multiple data paths for backup. An outstanding
reason is that TCP implementations such as Reno and Tahoe
[5, 6] are a single connection. If the network interface
associated with the IP address goes down, the TCP
connection needs to be reestablished [6]. Moreover, when

network becomes congested and drops packet, a host running
TCP implementation is not able to transmit data via other
paths, which may provide lower delay and better throughput.
All it can do is only reduce its rate and high-possibly
retransmit the lost segments to the congested path, which
may lead to packet loss again. Although there is no guarantee
that consecutive packets to the same destination will traverse
via the same path, most of them do. Therefore, M/TCP has
been developed in our laboratory as an alternative TCP
option to tackle with the problem. We showed performance
advantage of M/TCP in the presence of error model on
forward path [7]. The M/TCP used immediate ACK where an
ACK is immediately and randomly transmitted via a path.
However, applications over today’s Internet mostly operate
over paths with a high degree of asymmetry due to significant
load differences between forward path and reverse path. Due
to loss of ACKs on reverse path, controlling congestion based
on ACK counting results in underutilization of forward path
[8]. For this reason, a better ACK scheme is needed to
provide robustness under such conditions for M/TCP.
 In this paper, we introduce and evaluate
performance of M/TCP with new ACK schemes; duplicated
ACK and duplicated&delayed ACK. M/TCP utilizes the
extra bytes available in option field of the TCP header. We
call multi-route option. Endpoints running M/TCP
implementation can simultaneously transmit data via multiple
paths to the same destination. M/TCP requires no
modification in IP layer. What is needed is that two endpoints
communicating through M/TCP must have multiple network
interfaces to be subscribed to multiple ISPs as depicted in Fig.
1. This is very similar to well-known multi-homing. M/TCP
is compatible with both M/TCP entity and TCP entity. When
a sender needs to establish a connection, it will check
whether the other end is M/TCP entity or TCP entity. If the
other end is TCP entity, data will be transmitted in the same
manner as the current TCP. If the other end is M/TCP entity,
the endpoints will communicate each other via M/TCP. In
order to deal with communication via M/TCP, only transport
layer needs to be modified. Congestion control in M/TCP has
been derived from TCP congestion control [5]. Each route in
M/TCP has its parameters to probe network congestion. The
communication through M/TCP looks like multiple TCP
connections in the whole network. From the viewpoint of
application, however, M/TCP seems to be one connection as
same as TCP does.

M/TCP provides a better error-recovery strategy
than Reno and Tahoe do by providing a mechanism to
perform retransmission of lost segments to other paths
whereby quick and reliable retransmission can be desirable.
Furthermore, with the robust ACK schemes proposed in this
paper, M/TCP can provide improvement over Internets with
high packet-loss in an ACK channel by transmitting an ACK
via all paths.

 Section 2 discusses related work. M/TCP together
with the new ACK schemes are described in section 3. 1 Internet Service Providers

Section 4 presents implementation and shows simulation
results. Finally, we present conclusion and draw future work.

2. Related Work

The concept of multi-path data transmission is applied to
widespread area of communication. Multi-path is adapted to
routing connectionless traffic in ATM network [9]. The
multi-path routing scheme provides a low cell loss ratio in the
face of congestion. Multi-path is also utilized in Data
Exchange II in Tokyo Electric Power Company [10]. An
emergency information such as fire alarm is transmitted via
multiple paths. Although a connection goes down, the
information can arrive via other paths. This provides high
reliability to the communication.

A number of researchers have studies about multi-
path data transmission in IP layer [11]. Multi-route gateway2
and IP tunneling is employed to establish multiple paths.

Figure 1: Network Using Multi-Route Gateway

As shown in Fig. 1, if source node and destination node are
connected to the same ISP, it is high possible that a path is
independently selected in each ISP. Therefore, it can be
assumed that packets are transmitted via each ISP
independently. In simulation [11], data transmission is
divided into two modes. The first is by duplicating the data
and subsequently sending each copy through different paths
(Fig. 2(a)). The second is by breaking down the data and
subsequently distributing parts of the original data to multiple
paths (Fig. 2(b)). Simulation results showed that network
throughput could be improved. By using duplication mode,
communication between two endpoints can be continued
without interruption, though some packets are lost. On the
other hand, this mode causes wasteful traffic and may build
up congestion in the network. By using distribution mode,
high throughput can be achieved during normal data
transmission.

considers both of modes as an alternative to perform quick
and reliable retransmission.

3. M/TCP: Protocol Description

M/TCP provides improvement over the current TCP in aspect
of reliability and throughput. Because a host running M/TCP
implementation maintains parameters to independently probe
network congestion of each path, data can be transmitted via
multiple controlled paths. When congestion exists in a path,
M/TCP can perform quick and reliable retransmission
causing essential error recovery. The followings describe
these mechanisms.

3.1 Layer Structure
To provide congestion control and flow control effectively,
transport layer is divided into two sublayers. The lower
sublayer uses services provided from IP and is responsible for
congestion control and retransmission timer. The upper
sublayer is responsible for flow control, re-sequencing and
error recovery by means of obtaining information from the
lower sublayer.

...

GW 2

T2T1

ISP 1

ISP 2

ISP n

GW 4

GW 2nGW 2n-1

GW 3

GW 1

Figure 3: M/TCP Layer Structure

Flow Control, Resequencing, Error Recovery

Congestion
Control

Congestion
Control

Congestion
Control

IP IP IP

Application Layer

Transport Layer

Network Layer

Data Link Layer
Physical Layer

3.2 Multi-Route Option
M/TCP utilizes the extra bytes available in the option field of
the TCP header to contain necessary information for multi-
route connection control.

Figure 4: Multi-Route Option

Option Kind Option
Length Route ID Route ID

Reply

Sequence Reply

8 bits 8 bits 8 bits 8 bits

b a b a b a ab ab a b ab a b a a

Figure 2: (a) Duplication Mode; (b) Distribution Mode

These proposals motivate us to apply multi-path for
improving reliability and performance of the Internet. M/TCP
employs two data transmission modes mentioned above. For
normal data transmission, distribution mode is used to
achieve high throughput. For error recovery, M/TCP

R outer

b a
R o u te r

b

(a) (b)

R outer

b ab a
R o u te r

b

(a) (b)

R
s
s
t
a
s
R
a
f
c
c
i
t

2 Multi-route gateway can be implemented by extending functions of
ipfilter-3.2.10 in FreeBSD 2.2.8R

oute ID: Route ID informs the other end via which route the
egment is transmitted. Before sending a segment to a lower
ublayer, the upper sublayer assigns Route ID corresponding
o the lower sublayer. As a result, when the segment arrives
t the receiver, the receiver can distinguish each arrived
egment by Route ID.
eply Block: The current TCP can check data that has been
cknowledged by cumulative acknowledgment. It is difficult
or M/TCP that is multi-route connection to utilize
umulative acknowledgment due to differences of route’s
haracteristics. Thus, Route ID Reply and Sequence Reply
dentify Route ID and the first byte of segment that triggers
he ACK.

Figure 5: An example of Sending ACK

Since Route ID Reply and Sequence Reply in an ACK inform
the sender of the segment that triggers the ACK. The sender
can determine data that has been received and then retransmit
only the missing segments.

3.4 Congestion Control
3.4.1 Data Transmission Management
The current TCP updates congestion window by using
Sequence Number and Acknowledgement Number. But
M/TCP is not able to calculate an amount of unacknowledged
data of a particular route by using only Sequence Number and
Acknowledgement Number. That is because the data sent via
each route is not continuous. Thus, M/TCP maintains
information lists of transmitted segments. One list is for one
route. The information list contains the following three values
of every segment: (1) Sequence Number of unacknowledged
segments, ti_seq, (2) data length, ti_len, (3) the transmission
time of data packet at the source, ti_time. By utilizing the list,
delay time of every segment can be estimated. Besides, the
sender can determine the amount of unacknowledged
segments and update congestion window of each route.

When a sender sends a segment, it will add ti_len,
ti_seq and ti_time of the segment into the list as an entry. The
list maintains the entry until an ACK containing Sequence
Reply equals to ti_seq arrives.

Table 1: M/TCP Transmission Control Parameters

Variables Meaning

snd_una The first byte of unacknowledged data
that was sent by M/TCP

snd_mnxt The first byte of the next data that will
be sent by M/TCP

r_wnd Receiver’s advertised window

snd_nxt[x] The first byte of the next data that will
be sent via route x

snd_cwnd[x] Congestion window of route x
snd_ssthresh[x] Slow start threshold of route x

snd_muna[x] A number of unacknowledged data
bytes that were sent via route x

M/TC
contro
snd_m
handle
own c
and sn

data bytes allowed by flow control is calculated by equation
(3).

DATA(SEQ=100), r_id=0

ACK (AC K=98), r_id=1

sq_reply=100, rt_reply=0

Sender Receiver

 snd_una ≤ snd_nxt[x] ≤ snd_mnxt (1)

 snd_mnxt < snd_una + r_wnd (2)

 wnd_flow=snd_una+r_wnd-snd_mnxt (3)

Whenever an ACK arrives and acknowledges new data, the
sender updates snd_una and delete all of new acknowledged
data from buffer.

R ou te z

R ou te y

R ou te x

A CK e d

A CK e d

A CK e d

sn d_un a
r_w nd

snd_n x t[x]
u n A C K ed

= snd _m un a[z] snd _cw nd [z]
sn d_nx t[z] = sn d_m n xt

+

≤

= snd_m una[y] snd _cw nd [y]≤

= sn d_m u na[x] snd _cw nd [x]≤

Figure 7: An example of updating snd_nxt

Fig. 7 shows an example of updating snd_nxt of route x, y
and z. The sender determines snd_muna[x] by counting
number of data remaining in the information list of route x. If
snd_muna[x] is still less than snd_cwnd[x], the sender allows
a new data segment to route x.

3.4.2 Data Receiving Management
Every lower sublayer sends segments received from IP layer
to the upper sublayer. The upper sublayer has only one buffer
to maintain data that will be delivered to the application layer.
The receiver handles all received segments in the same way
regardless of by which mode segments were transmitted.

Table 2: M/TCP Receiving Control Parameters
Variables Meaning
rcv_wnd Receiving window

rcv_nxt The first byte of data that the receiver
expects to receive

ti_seq Sequence Number of the arriving
segment

ti_len Data length of the arriving segment

r_wnd After a segment arrives, the receiver investigates whether an

Figure 6: Updating snd_mnxt

P maintains parameters in Table 1 for transmission
l. The upper sublayer is responsible for snd_una and
nxt as parameters of the whole data. A lower sublayer
s snd_nxt[x], snd_cwnd[x] and snd_muna[x] as its
ongestion control parameters. The values of snd_nxt[x]
d_mnxt must satisfy equation (1) and (2). Number of

ACKed

snd_una
snd_nxt[x]

snd_mnxt

a
s

3
M
c
p
t
m
t
m
d

rriving segment should be put into the receiving buffer or
hould be thrown away.

.4.3 OWTT Measurement & RTO Calculation
/TCP is multi-path connection. A data segment and the

orresponding ACK are possibly transmitted via different
aths. To assign Retransmission Timeout (RTO) for each
ransmitting segment, One-Way-Trip Time (OWTT)
easurement is needed to allow a sender to estimate delay

ime of forward path and reverse path separately. OWTT
easurement in [15] is used in M/TCP. Below is a brief

escription of OWTT measurement in M/TCP.

 Whenever the sender receives an ACK containing
Route ID Reply = x and Route ID = y, the time interval of
forward path via route x, OWTTxf, and the time interval of
reverse path via route y, OWTTyr, are calculated by

 Err = Mxy – (OWTTxf + OWTTyr) (4)

 Mxf OWTTxf + Err/2 (5)

 Myr OWTTyr + Err/2 (6)

where Mxy is the measured time interval between sending a
particular sequence number via route x and receiving the
corresponding ACK via route y. Mxy can be calculated from
time that was recorded in information list at the sender. Mxf is
the measured time interval of forward path via route x and
Myr is the measured time interval of reverse path via route y.

Based on the original TCP specification [12], OWTTxf and
OWTTyr are updated and RTO is determined as follows.

 OWTTxf αOWTTxf + (1-α)Mxf (7)

 OWTTyr αOWTTyr + (1-α)Myr (8)

For Distribution Mode:

 RTOx = (OWTTxf+max(OWTTr))β (9)

For Duplication Mode:

 RTOx = (max(OWTTf)+max(OWTTr))β (10)
where α is a smoothing factor, β is a delay variance factor,
RTOx is retransmission timeout value of the next segment
transmitted via route x, max(OWTTf) is the maximum value
among the time intervals of forward path and max(OWTTr) is
the maximum value among the time intervals of reverse path.

For distribution mode, max(OWTTr) is used because the
sender cannot expect via which route the corresponding ACK
will be sent back. Similarly, max(OWTTf) is used for
duplication mode because the sender cannot expect via which
route the data will arrive at the receiver. Moreover, it would
be better to overestimate than underestimate the RTT, which
may lead to unnecessary retransmissions.
 By using the OWTT measurement mentioned
above, the endpoints can deal with communication even if a
data segment and the corresponding ACK are transmitted via
different paths.

3.5 Error Recovery
Current TCP implementations have two possible mechanisms
for detecting a packet loss; fast retransmit algorithm [5] and
retransmission timeout [13]. M/TCP error recovery is
designed based on these mechanisms but provides
improvements by using merit of multi-path.

3.5.1 Fast Retransmit Algorithm
A TCP sender generally retransmits a lost packet more
frequently with fast retransmit, inferring a packet loss after
three duplicate ACKs have been received. Similarly, an
M/TCP sender detects a packet loss and subsequently
performs a retransmission when three duplicate ACKs of a
particular route have been received. What is different from
TCP is retransmission mode. M/TCP employs duplication
mode, duplicating the missing segment and sending each

copy through all paths satisfying equation (11), whereby
quick and reliable retransmission can be desirable.

wnd_cong[i] ≥ size of the missing segment (11)

where wnd_cong[i] is number of data bytes allowed by
congestion control of route i, which equals to snd_cwnd[i]-
snd_muna[i].

3.5.2 Retransmission Timeout
Every lower sublayer manages its retransmission timer. When
a retransmit timer of a lower sublayer expires, the upper
sublayer performs retransmission of unACKed data in the
information list. Since there is no data flow along the lower
sublayer experiencing timeout, the upper sublayer will
distribute the missing segments to other lower sublayers that
satisfy equation (11).

3.6 Robust ACK Reply mechanisms
There are three ways for a receiver to transmit an ACK when
it receives data segments.
1. Immediate ACK: an M/TCP receiver transmits an ACK
immediately upon receiving a data segment. The receiver
randomly sends the ACK via one of all paths. Sequence Reply
in an ACK represents the first bytes of the segment that
triggers the ACK.

Sender Receiver

By using
of ACK
duplicate
M/TCP r
provide i
reverse p
2. Dupl
immedia
one path
gets lost,
informat

Figure 8: Immediate ACK

DATA(SEQ=512), r_id=0
DATA(SEQ=256), r_id=1

ACK(ACK=256), r_id=0

sq_reply=512, rt_reply=0

ACK(ACK=768), r_
id=1

sq_reply=256, rt_
reply=1

Immediate
ACK

 the immediate ACK, M/TCP may suffer from loss
s on reverse paths. Therefore, we introduce
d ACK and duplicated&delayed ACK where an
eceiver transmits an ACK via more than one path to
mprovement over Internets with high packet-loss on
aths.
icated ACK: an M/TCP receiver sends an ACK
tely upon the receipt of a data segment to more than
. As a result, even if an ACK traverses via a route
 the sender can obtain an ACK containing the same
ion from the other route.

Sender Receiver
Figure 9: Duplicated ACK

DATA(SEQ=512), r_id=0

ACK(ACK=256), r_id=0

sq_reply=512, rt_reply=0

ACK(ACK=768), r_id=0

sq_reply=256, rt_reply=1

ACK(ACK=256), r
_id=1

sq_rep
ly=512, rt_

rep
ly=0

ACK(ACK=768), r
_id=1

sq_rep
ly=256, rt_

rep
ly=1

DATA(SEQ=256), r_id=1
Duplicated

ACK

 Table 3: Evaluation Condition
3. Duplicated & Delayed ACK: an M/TCP receiver does not
send an ACK the instant it receives data. Instead, it will wait
and send ACK along with the next data going to the same
direction. The receiver transmits an ACK for every other data
segments via more than one path. In this case, the ACK
contains Reply blocks consisting of Route ID Reply and
Sequence Reply corresponding to all arrived segments. As
shown in Fig. 10, since three segments have arrived at the
receiver during delay time, the receiver transmits an ACK
containing three Reply blocks via two paths.

ACK reply policy
Immediate ACK
Duplicated ACK
Duplicated & Delayed ACK

Packet size 1 Kbytes
Slow start threshold 20 packets
Receiver’s window 20 packets
FTP transfer 2 Mbytes
Error model (EM) on
Forward Path (FP)

Packet error rate (%): 2

EM on Reverse Path (RP) Packet error rate (%): 0,5,10,13

 Se

nder Receiver

4
P
s
s
c
i
i
s
e
e
s
m

Start delay timer

DATA(SEQ=512), r_id=0

ACK(ACK=768), r_id=0

Reply Blocks

Delayed ACK

DATA(SEQ=1024), r_id=0DATA(SEQ=768, r_id=1 Start delay timer

Reply Blocks
sq_reply = 512, rt_reply = 0
sq_reply = 256, rt_reply = 1

sq_reply = 1024, rt_reply = 0

ACK(ACK=768), r_
id=1

Reply Blocks

DATA(SEQ=256, r_id=1

We investigate performance of M/TCP with the new ACK
schemes (Duplicated ACK and Duplicated&Delayed ACK)
compared to TCP Reno and M/TCP with immediate ACK.
We show simulation results of M/TCP in the presence of
error model on both forward and reverse paths.

2 M b
2 0 m s

1 M b
1 0 m s

5 M b
6 m s

1 M b
1 0 m s

M /T C P
R e c e iv e r

M /T C P
S e n d e r

R o u te r

R o u te r

EM on FP

EM on FPEM on RP

EM on RP

Figure 10: Duplicated & Delayed ACK Figure 12: Basic configuration for M/TCP with EM on both
forward and reverse paths

. Performance Results

erformance studies of M/TCP are conducted using network
imulator NS-2 [14]. A basic configuration with a single
ource, a single destination and two transmission paths are
onsidered for M/TCP. The simulator contains
mplementations of Agent and TCP Reno. First, two network
nterfaces are implemented by extending the existing Agent
ource code. M/TCP is implemented by modifying the
xisting TCP-Reno source code to include congestion control,
rror recovery and the new ACK schemes. The M/TCP
ender transmits data segments by means of round-robin
anner as shown in Fig. 11.

Figure 13: Simulation Model for TCP Reno

5 Mb
6 ms

1 Mb
10 ms TCP

Receiver
TCP

Sender Router EM on FPEM on RP

For each evaluation condition, we repeated simulation 10
times and averaged throughput. Table 4 shows comparison of
the throughput provided by protocol agents. Fig. 14 shows a
simulation result of sequence number sent by protocol agents
with 2% packet error rate on forward path and 5% packet
error rate on reverse path. Fig. 15 shows the growth of
Reno’s congestion window. Fig. 16, 17 and 18 show the
growth of congestion window of M/TCP with immediate

A
r

min(wnd_flow,wnd_cong[0])
>= MSS

Send a packet to route 0

seq_num = seq_num + MSS

min(wnd_flow,wnd_cong[1])
>= MSS

Send a packet to route 1

seq_num = seq_num + MSS

Yes

Yes

No

No

(

 Figure 11: Transmission Flowchart
3

CK, duplicated ACK and duplicated&delayed ACK
espectively.

Table 4: Comparison of Throughput (Mbps)
EM on RP 0% 5% 10% 13%

TCP Reno 0.80 0.78 0.76 0.75
M/TCP

(Immediate ACK) 1.35 1.29 1.23 1.22

Improvement3 69% 66% 62% 63%
M/TCP

(Duplicated ACK) 1.40 1.39 1.43 1.39

Improvement 75% 79% 88% 86%
M/TCP

Duplicated&Delayed) 1.38 1.44 1.39 1.37

Improvement 73% 84% 83% 83%

 Calculated by = M/TCP - 1

 Reno

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12 14 16 18 20 22

Time (second)

Se
qu

en
ce

 N
um

be
r (

K
by

te
)

TCP Reno
M/TCP (Immediate ACK)
M/TCP (Duplicated ACK)
M/TCP (Dup & Del ACK)

Figure 14: Sequence Number sent by Protocol Agents

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20 2

Time (second)

C
on

ge
st

io
n

W
in

do
w

 (p
ac

ke
t)

2

Figure 15: Congestion Window of TCP Reno

0

5

10

15

20

25

0 2 4 6 8 10 12
Time (second)

C
on

ge
st

io
n

W
in

do
w

 (p
ac

ke
t)

14

Route #0 Route #1

Figure 16: Congestion Window of M/TCP (Immediate ACK)

0

5

10

15

20

25

0 2 4 6 8 10 12
Time (second)

C
on

ge
st

io
n

W
in

do
w

 (p
ac

ke
t)

14

Route #0 Route #1

Figure 17: Congestion Window of M/TCP (Duplicated ACK)

0

5

10

15

20

25

0 2 4 6 8 10 12
Time (second)

C
on

ge
st

io
n

W
in

do
w

 (p
ac

ke
t)

14

Route #0 Route #1

Figure 18: Congestion Window of M/TCP

(Duplicated & Delayed ACK)

As can be seen from Table 4, when EM on RP exists,
throughput of M/TCP with duplicated ACK and M/TCP with
duplicated&delayed ACK does not much suffer compared to
throughput of TCP Reno and M/TCP with Immediate ACK.
One possible reason is that M/TCP with duplicated ACK and
M/TCP with duplicated&delayed ACK transmits an ACK via
both routes. Even if a route becomes congested and drops
packets, the ACK can arrive via the other route. M/TCP with
immediate ACK suffers from EM on RP because it randomly
sends an ACK via one of both routes, which may lead to
unnecessary retransmission if the ACK gets lost.

Furthermore, it appears that M/TCP achieves at
least 62% improvement in throughput compared to TCP
Reno. The reason is that M/TCP can make better use of link
capacity in both routes. For example, in simulation of M/TCP
with immediate ACK at t ≈ 3.6 s, M/TCP can transmit data
via Route #1 even though Route #0 experiences timeout. TCP
Reno’s throughput suffers from timeout because it falls into

slow start and can only gradually retransmit lost segments
starting from one segment.
 In table 4, the throughput values of TCP Reno with
0% packet error rate are a little bit different from those with
13% packet error rate. The reason is that the reduction in
throughput results from the increase of packet loss rate on
ACK path only. In all simulation, packet loss rate on forward
path (data path) was constantly set to 2%. 0% and 13% in
table 4 are the percentages of packet loss rate on ACK path.
Moreover, the TCP receiver sends an ACK immediately upon
the receipt of a data segment. Thus, the TCP sender
frequently gets a new ACK even though the previous new
ACK gets lost.

5. Conclusion

We introduced M/TCP and its robust ACK schemes;
duplicated ACK and duplicated&delayed ACK. The protocol

can be implemented as a TCP option called multi-route
option. M/TCP makes use of the option to distinguish routes
of the connection. Each lower sublayer maintains parameters
for probing its network congestion. The protocol uses OWTT
measurement to estimate delay time of forward path and
reverse path separately. Then, calculate RTO values. The
OWTT measurement does not require clock synchronization
between two hosts because OWTT values are calculated from
time recorded at the sender. By using OWTT measurement
and multi-route option, the endpoints can deal with
congestion control of each path. Therefore, a data segment
and the corresponding ACK can be transmitted via different
paths.

Simulation results showed that M/TCP with new
ACK schemes could achieve much higher throughput than
TCP Reno and M/TCP with the conventional immediate
ACK scheme. In simulation with error model on reverse path,
throughput of M/TCP with the new ACK schemes did not
much suffer whereas throughput of M/TCP with immediate
ACK relatively decreased. One possible explanation could be
that our protocol with the new ACK schemes successfully
provides robust ACK reply mechanisms by using duplication
mode, duplicating an ACK and subsequently sending each
copy to different paths, whereby an ACK can quickly and
reliably arrive at the other end. This duplication mechanism
cannot be implemented in TCP. Furthermore, M/TCP
provides an effective error recovery. When fast retransmit
algorithms invoke, the sender employs duplication mode so
that the missing segment can be expected to quickly and
reliably arrive at the other end by the first retransmission.
When a retransmit timer of a route expires, the sender can use
other routes not experiencing timeout for retransmission.

These findings lead support to the conclusion that
our protocol with the new ACK schemes is very promising
and behaves as an efficient transport protocol. Besides,
because of its TCP-based congestion control, M/TCP
performs TCP-friendly congestion control. Our current work
focuses on evaluating its coexistence with other TCP
implementations. To do so, many TCP connections should
exist on both forward and reverse paths, and simulation
model may need to be changed.

References

[1] K. Thompson, G.J. Miller, and R. Wilder, “Wide-Area Internet
Traffic Patterns and Characteristics”, IEEE Network, Nov. 1997.

[2] M. Mathis et al., “TCP Selective Acknowledgment Options,”
RFC 2018, Apr. 1996.

[3] K. Ramakrishnan and S. Floyd, “A Proposal to add Explicit
Congestion Notification (ECN) to IP”, RFC 2481, Jan. 1999.

[4] J. Hadi Salim and U. Ahmed, “Performance Evaluation of
Explicit Congestion Notification (ECN) in IP Networks”, RFC 2884,
Jul. 2000.

[5] M. Allman, V. Paxson and W. Stevens, “TCP Congestion
Control”, RFC 2581, Apr. 1999.

[6] W. Richard Stevens, “TCP/IP Illustrated, Volume1: The
Protocols”, Addison Wesley, 1994.

[7] K. Rojviboonchai and H. Aida, “Retransmission Mechanisms in
Multipath Transmission Control Protocol”, Electronics, Information
and Systems Conference, Session TC6, No.4, pp. 159-160, Sep. 2002.

[8] T. Lakshman, U.Madhow and B.Suter, “Window-based error
recovery with a slow acknowledgement channel: a study of TCP/IP
performance”, Proc. IEEE INFOCOM’97, Vol. 3, pp. 1199-1209,
1997.

[9] J. Sole-Pareta, D. Sarkar, J. Liebeherr, I.F. Akyildiz, “Adaptive
Multipath Routing of Connectionless Traffic in an ATM Network”,
Proc. IEEE ICC’95, 1995.

[10] http://www.tepco.co.jp/index-e.html

[11] H. Hayashi, S. Yamasaki, N. Morita, H. Aida, M. Takeichi and
N. Doi, “Performance Evaluation of Data Transfer on Multiple
Routes through Internet”, Trans. IEICE B, Vol. J84-B, No.3, pp. 514-
522, 2001. (Japanese)

[12] J. Postel, “Transmission Control Protocol DARPA Internet
Program Protocol Specification,” RFC 793, Sep. 1981.

[13] V. Paxson, M. Allman, “Computing TCP’s Retransmission
Timer”, RFC 2988, Nov. 2000.

[14] http://www.isi.edu/nsnam/ns/index/html

[15] K. Rojviboonchai, N. Watanabe and H. Aida, “One-Way-Trip
Time (OWTT) Measurement and Retransmission Policy for
Congestion Control in M/TCP”, Annual Conference of IPSJ, Mar.
2002.

http://www.tepco.co.jp/index-e.html
http://www.isi.edu/nsnam/ns/index/html

	Abstract
	Figure 6: Updating snd_mnxt
	Every lower sublayer manages its retransmission timer. When a retransmit timer of a lower sublayer expires, the upper sublayer performs retransmission of unACKed data in the information list. Since there is no data flow along the lower sublayer experienc
	Figure 8: Immediate ACK
	Figure 10: Duplicated & Delayed ACK
	Performance studies of M/TCP are conducted using network simulator NS-2 [14]. A basic configuration with a single source, a single destination and two transmission paths are considered for M/TCP. The simulator contains implementations of Agent and TCP Re
	ACK reply policy
	Packet size
	
	
	EM on RP
	0%

